cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 98 results. Next

A168970 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222070
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 23: a(23) = 87960930222070, A003947(23) = 87960930222080. - Klaus Brockhaus, Apr 19 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Formula

G.f.: (t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A169018 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 24: a(24) = 351843720888310, A003947(24) = 351843720888320. - Klaus Brockhaus, Apr 20 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Programs

Formula

G.f.: (t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A169066 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 1407374883553270, A003947(25) = 1407374883553280. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[24]]+t^25+1,den=Total[-3 t^Range[24]]+ 6t^25+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Dec 18 2012 *)

Formula

G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A169162 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^27 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 27: a(27) = 22517998136852470, A003947(27) = 22517998136852480. - Klaus Brockhaus, May 07 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Programs

Formula

G.f.: (t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^27 - 3*t^26 - 3*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A169210 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 28: a(28) = 90071992547409910, A003947(28) = 90071992547409920. - Klaus Brockhaus, May 24 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[27]]+t^28+1,den=Total[-3 t^Range[27]]+6t^28+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jan 02 2014 *)

Formula

G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^28 - 3*t^27 - 3*t^26 - 3*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A169258 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 29: a(29) = 360287970189639670, A003947(29) = 360287970189639680. - Klaus Brockhaus, Jun 03 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[28]]+t^29+1,den=Total[-3 t^Range[28]]+6t^29+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jan 19 2014 *)

Formula

G.f.: (t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^29 - 3*t^28 - 3*t^27 - 3*t^26 - 3*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A169306 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 30: a(30) = 1441151880758558710, A003947(30) = 1441151880758558720. - Klaus Brockhaus, Jun 22 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Programs

Formula

G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^30 - 3*t^29 - 3*t^28 - 3*t^27 - 3*t^26 - 3*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A169354 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^31 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 31: a(31) = 576460752303423487, A003947(31) = 576460752303423488. - Klaus Brockhaus, Jun 17 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Programs

Formula

G.f.: (t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^31 - 3*t^30 - 3*t^29 - 3*t^28 - 3*t^27 - 3*t^26 - 3*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A169450 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[32]]+t^33+1,den=Total[-3 t^Range[32]]+6t^33+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Mar 11 2013 *)

Formula

G.f. (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(6*t^33 - 3*t^32 - 3*t^31 - 3*t^30 - 3*t^29 - 3*t^28 - 3*t^27 -
3*t^26 - 3*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 - 3*t^19 -
3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 -
3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 -
3*t + 1)

A169498 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^34 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(6*t^34 - 3*t^33 - 3*t^32 - 3*t^31 - 3*t^30 - 3*t^29 - 3*t^28 -
3*t^27 - 3*t^26 - 3*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 -
3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 -
3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3
- 3*t^2 - 3*t + 1)
Previous Showing 51-60 of 98 results. Next