cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A169312 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
First disagreement at index 30: a(30) = 1099999999999999999999999999945, A003953(30) = 1100000000000000000000000000000. - Klaus Brockhaus, Jun 22 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A003953 (G.f.: (1+x)/(1-10*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[29]]+t^30+1,den=Total[-9 t^Range[29]]+ 45t^30+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Oct 13 2012 *)

Formula

G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^30 - 9*t^29 - 9*t^28 - 9*t^27 - 9*t^26 - 9*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).

A169360 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^31 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
First disagreement at index 31: a(31) = 10999999999999999999999999999945, A003953(31) = 11000000000000000000000000000000. - Klaus Brockhaus, Jun 17 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A003953 (G.f.: (1+x)/(1-10*x)).

Formula

G.f.: (t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^31 - 9*t^30 - 9*t^29 - 9*t^28 - 9*t^27 - 9*t^26 - 9*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).

A169408 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 55. - Klaus Brockhaus, Jun 27 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A003953 (G.f.: (1+x)/(1-10*x) ).

Programs

Formula

G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^32 - 9*t^31 - 9*t^30 - 9*t^29 - 9*t^28 - 9*t^27 - 9*t^26 - 9*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).
G.f.: (1+2*sum(k=1..31, x^k)+x^32)/(1-9*sum(k=1..31, x^k)+45*x^32).

A169456 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(45*t^33 - 9*t^32 - 9*t^31 - 9*t^30 - 9*t^29 - 9*t^28 - 9*t^27 -
9*t^26 - 9*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 -
9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 -
9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 -
9*t + 1)

A169504 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^34 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(45*t^34 - 9*t^33 - 9*t^32 - 9*t^31 - 9*t^30 - 9*t^29 - 9*t^28
- 9*t^27 - 9*t^26 - 9*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20
- 9*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12
- 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 -
9*t^3 - 9*t^2 - 9*t + 1)

A170020 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^36 - 9*t^35 - 9*t^34 - 9*t^33 - 9*t^32
- 9*t^31 - 9*t^30 - 9*t^29 - 9*t^28 - 9*t^27 - 9*t^26 - 9*t^25 - 9*t^24
- 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 - 9*t^18 - 9*t^17 - 9*t^16
- 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 -
9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1)

A170068 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^37 - 9*t^36 - 9*t^35 -
9*t^34 - 9*t^33 - 9*t^32 - 9*t^31 - 9*t^30 - 9*t^29 - 9*t^28 - 9*t^27 -
9*t^26 - 9*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 -
9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 -
9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 -
9*t + 1)

A170116 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^38 - 9*t^37 -
9*t^36 - 9*t^35 - 9*t^34 - 9*t^33 - 9*t^32 - 9*t^31 - 9*t^30 - 9*t^29 -
9*t^28 - 9*t^27 - 9*t^26 - 9*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 -
9*t^20 - 9*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 -
9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4
- 9*t^3 - 9*t^2 - 9*t + 1)

A170164 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^39 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^39 -
9*t^38 - 9*t^37 - 9*t^36 - 9*t^35 - 9*t^34 - 9*t^33 - 9*t^32 - 9*t^31 -
9*t^30 - 9*t^29 - 9*t^28 - 9*t^27 - 9*t^26 - 9*t^25 - 9*t^24 - 9*t^23 -
9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 -
9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 -
9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1)

A170212 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^40 = I.

Original entry on oeis.org

1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(45*t^40 - 9*t^39 - 9*t^38 - 9*t^37 - 9*t^36 - 9*t^35 - 9*t^34 -
9*t^33 - 9*t^32 - 9*t^31 - 9*t^30 - 9*t^29 - 9*t^28 - 9*t^27 - 9*t^26 -
9*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 - 9*t^18 -
9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 -
9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1)
Previous Showing 41-50 of 59 results. Next