A168929
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
A168977
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
A169025
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
-
With[{num=Total[2t^Range[23]]+t^24+1,den=Total[-10 t^Range[23]]+ 55t^24+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Sep 18 2011 *)
A169073
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
A169121
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
-
With[{num=Total[2t^Range[25]]+t^26+1,den=Total[-10 t^Range[25]]+55t^26+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, May 10 2012 *)
A169169
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^27 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
A169217
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
A169265
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
A169313
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
A169361
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^31 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
Comments