cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A169409 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 66. - Klaus Brockhaus, Jun 27 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A003954 (G.f.: (1+x)/(1-11*x) ).

Programs

  • Mathematica
    With[{num=Total[2t^Range[31]]+t^32+1,den=Total[-10 t^Range[31]]+55t^32+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Aug 13 2014 *)

Formula

G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^32 - 10*t^31 - 10*t^30 - 10*t^29 - 10*t^28 - 10*t^27 - 10*t^26 - 10*t^25 - 10*t^24 - 10*t^23 - 10*t^22 - 10*t^21 - 10*t^20 - 10*t^19 - 10*t^18 - 10*t^17 - 10*t^16 - 10*t^15 - 10*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
G.f.: (1+2*sum(k=1..31, x^k)+x^32)/(1-10*sum(k=1..31, x^k)+55*x^32).

A169457 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[32]]+t^33+1,den=Total[-10 t^Range[32]]+55t^33+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jun 18 2014 *)

Formula

G.f. (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(55*t^33 - 10*t^32 - 10*t^31 - 10*t^30 - 10*t^29 - 10*t^28 - 10*t^27
- 10*t^26 - 10*t^25 - 10*t^24 - 10*t^23 - 10*t^22 - 10*t^21 - 10*t^20 -
10*t^19 - 10*t^18 - 10*t^17 - 10*t^16 - 10*t^15 - 10*t^14 - 10*t^13 -
10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5
- 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1)

A169505 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^34 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(55*t^34 - 10*t^33 - 10*t^32 - 10*t^31 - 10*t^30 - 10*t^29 -
10*t^28 - 10*t^27 - 10*t^26 - 10*t^25 - 10*t^24 - 10*t^23 - 10*t^22 -
10*t^21 - 10*t^20 - 10*t^19 - 10*t^18 - 10*t^17 - 10*t^16 - 10*t^15 -
10*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 -
10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1)

A169553 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^35 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(55*t^35 - 10*t^34 - 10*t^33 - 10*t^32 - 10*t^31 -
10*t^30 - 10*t^29 - 10*t^28 - 10*t^27 - 10*t^26 - 10*t^25 - 10*t^24 -
10*t^23 - 10*t^22 - 10*t^21 - 10*t^20 - 10*t^19 - 10*t^18 - 10*t^17 -
10*t^16 - 10*t^15 - 10*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 -
10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 -
10*t + 1)

A170021 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^36 - 10*t^35 - 10*t^34 - 10*t^33 -
10*t^32 - 10*t^31 - 10*t^30 - 10*t^29 - 10*t^28 - 10*t^27 - 10*t^26 -
10*t^25 - 10*t^24 - 10*t^23 - 10*t^22 - 10*t^21 - 10*t^20 - 10*t^19 -
10*t^18 - 10*t^17 - 10*t^16 - 10*t^15 - 10*t^14 - 10*t^13 - 10*t^12 -
10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4
- 10*t^3 - 10*t^2 - 10*t + 1)

A170069 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^37 - 10*t^36 - 10*t^35 -
10*t^34 - 10*t^33 - 10*t^32 - 10*t^31 - 10*t^30 - 10*t^29 - 10*t^28 -
10*t^27 - 10*t^26 - 10*t^25 - 10*t^24 - 10*t^23 - 10*t^22 - 10*t^21 -
10*t^20 - 10*t^19 - 10*t^18 - 10*t^17 - 10*t^16 - 10*t^15 - 10*t^14 -
10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 -
10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1)

A170117 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^38 - 10*t^37 -
10*t^36 - 10*t^35 - 10*t^34 - 10*t^33 - 10*t^32 - 10*t^31 - 10*t^30 -
10*t^29 - 10*t^28 - 10*t^27 - 10*t^26 - 10*t^25 - 10*t^24 - 10*t^23 -
10*t^22 - 10*t^21 - 10*t^20 - 10*t^19 - 10*t^18 - 10*t^17 - 10*t^16 -
10*t^15 - 10*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 -
10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1)

A170165 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^39 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^39 -
10*t^38 - 10*t^37 - 10*t^36 - 10*t^35 - 10*t^34 - 10*t^33 - 10*t^32 -
10*t^31 - 10*t^30 - 10*t^29 - 10*t^28 - 10*t^27 - 10*t^26 - 10*t^25 -
10*t^24 - 10*t^23 - 10*t^22 - 10*t^21 - 10*t^20 - 10*t^19 - 10*t^18 -
10*t^17 - 10*t^16 - 10*t^15 - 10*t^14 - 10*t^13 - 10*t^12 - 10*t^11 -
10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 -
10*t^2 - 10*t + 1).

A170213 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^40 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(55*t^40 - 10*t^39 - 10*t^38 - 10*t^37 - 10*t^36 - 10*t^35 - 10*t^34
- 10*t^33 - 10*t^32 - 10*t^31 - 10*t^30 - 10*t^29 - 10*t^28 - 10*t^27 -
10*t^26 - 10*t^25 - 10*t^24 - 10*t^23 - 10*t^22 - 10*t^21 - 10*t^20 -
10*t^19 - 10*t^18 - 10*t^17 - 10*t^16 - 10*t^15 - 10*t^14 - 10*t^13 -
10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5
- 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1)

A170261 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^41 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(55*t^41 - 10*t^40 - 10*t^39 - 10*t^38 - 10*t^37 - 10*t^36 - 10*t^35
- 10*t^34 - 10*t^33 - 10*t^32 - 10*t^31 - 10*t^30 - 10*t^29 - 10*t^28 -
10*t^27 - 10*t^26 - 10*t^25 - 10*t^24 - 10*t^23 - 10*t^22 - 10*t^21 -
10*t^20 - 10*t^19 - 10*t^18 - 10*t^17 - 10*t^16 - 10*t^15 - 10*t^14 -
10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 -
10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1)
Previous Showing 41-50 of 57 results. Next