cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A027638 Order of 2^n X 2^n unitary group H_n acting on Siegel modular forms.

Original entry on oeis.org

4, 96, 46080, 371589120, 48514675507200, 101643290713836748800, 3409750224676138896064512000, 1830483982118721406049481526345728000, 15723497752907010191583185709179507111362560000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027638:= func< n | n eq 0 select 4 else 2^(n^2+2*n+2)*(&*[4^j-1: j in [1..n]]) >;
    [A027638(n): n in [0..15]]; // G. C. Greubel, Aug 04 2022
    
  • Maple
    seq( 2^(n^2+2*n+2)*product(4^i -1, i=1..n), n=0..12);
  • Mathematica
    Table[2^(n^2+2n+2) Product[4^k-1,{k,n}],{n,0,10}] (* Harvey P. Dale, May 21 2018 *)
  • PARI
    a(n) = my(ret=1); for(i=1,n, ret = ret<<(2*i)-ret); ret << (n^2+2*n+2); \\ Kevin Ryde, Aug 13 2022
  • SageMath
    from sage.combinat.q_analogues import q_pochhammer
    def A027638(n): return (-1)^n*2^(n^2 + 2*n + 2)*q_pochhammer(n, 4, 4)
    [A027638(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
    

Formula

a(n) = A003956(n)/2.
a(n) = 2^(n^2 + 2*n + 2) * Product_{j=1..n} (4^j - 1).
a(n) ~ c * 2^(2*n^2+3*n+2), where c = A100221. - Amiram Eldar, Jul 06 2025

A051354 Expansion of Molien series for 16-dimensional complex Clifford group of genus 4 and order 97029351014400.

Original entry on oeis.org

1, 1, 2, 7, 19, 52, 172, 550, 1782, 5845, 18508, 56345, 164157, 454518, 1196924, 3003750, 7198311, 16523847, 36447873, 77478005, 159172517, 316874035, 612729396, 1153359711, 2117566545, 3798941401, 6670327291, 11479693332, 19390588953, 32185179449, 52553840336
Offset: 0

Views

Author

Keywords

Comments

Oura gives an explicit formula for the Molien series that produces A027672; the present sequence is the subsequence formed from the terms whose exponents are multiples of 8 (that is, every other term of A027672). In other words, the present Molien series is (f(x)+f(z*x))/2, where z = exp(2*Pi*I/8) and f(x) is the Molien series for the group H_4 given explicitly by Oura in Theorem 4.1.

Examples

			1 + t^8 + 2*t^16 + 7*t^24 + 19*t^32 + 52*t^40 + 172*t^48 + ...
		

Crossrefs

Programs

  • Mathematica
    (* See link for Mathematica program. *)

Formula

a(n) = A027672(2*n).

Extensions

Edited by Georg Fischer, Jan 24 2021

A353196 Number of stabilizer states on n qubits.

Original entry on oeis.org

6, 60, 1080, 36720, 2423520, 315057600, 81284860800, 41780418451200, 42866709330931200, 87876754128408960000, 360118938418219918080000, 2950814581398894008747520000, 48352047730802277227336862720000, 1584496604138390624739828991334400000
Offset: 1

Views

Author

James Rayman, Apr 29 2022

Keywords

Comments

A stabilizer state is a quantum state on n qubits prepared by applying a series of Hadamard, CNOT, and S gates to the all-zero state. There are only a finite number of such states for any n.

Examples

			For n = 1, the a(1) = 6 states are |0>, |1>, |+>, |->, |i>, and |-i>.
		

Crossrefs

Programs

  • Mathematica
    Table[2^n * QPochhammer[-2, 2, n], {n, 13}] (* Amiram Eldar, Aug 17 2025 *)
  • Python
    def a(n):
        ans = 2 ** n
        for i in range(1, n+1):
            ans *= 2 ** i + 1
        return ans
    
  • Python
    from math import prod
    def A353196(n): return prod((1<Chai Wah Wu, Jun 20 2022

Formula

a(n) = 2^n*Product_{i=1..n} (2^i+1).
a(n) = A000079(n)*A028362(n+1).
a(n) ~ c * 2^(n*(n+3)/2) where c = Product_{k>=1} (1 + 1/2^k) = A079555. - Amiram Eldar, Aug 17 2025
Previous Showing 11-13 of 13 results.