cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 102 results. Next

A349355 Dirichlet convolution of A003958 with A063441 (Dirichlet inverse of A003959), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.

Original entry on oeis.org

1, -2, -2, -2, -2, 4, -2, -2, -4, 4, -2, 4, -2, 4, 4, -2, -2, 8, -2, 4, 4, 4, -2, 4, -8, 4, -8, 4, -2, -8, -2, -2, 4, 4, 4, 8, -2, 4, 4, 4, -2, -8, -2, 4, 8, 4, -2, 4, -12, 16, 4, 4, -2, 16, 4, 4, 4, 4, -2, -8, -2, 4, 8, -2, 4, -8, -2, 4, 4, -8, -2, 8, -2, 4, 16, 4, 4, -8, -2, 4, -16, 4, -2, -8, 4, 4, 4, 4, -2, -16
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2021

Keywords

Comments

Multiplicative because both A003958 and A063441 are.
In Dirichlet ring this sequence works as a kind of replacement operator which replaces the factor A003959 with factor A003958. For example, convolving this with A003968 (the Möbius transform of A003959) produces A003966, the Möbius transform of A003958.

Crossrefs

Cf. A003958, A003959, A003966, A003968, A063441, A349356 (Dirichlet inverse), A349357 (sum with it).
Cf. also A349382.

Programs

  • Mathematica
    f[p_, e_] := -2*(p - 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A063441(n) = (moebius(n)*sigma(n)); \\ Also Dirichlet inverse of A003959.
    A349355(n) = sumdiv(n,d,A003958(n/d)*A063441(d));

Formula

a(n) = Sum_{d|n} A003958(n/d) * A063441(d).
Multiplicative with a(p^e) = -2*(p-1)^(e-1). - Amiram Eldar, Nov 16 2021

A349620 Dirichlet convolution of A003415 with the Dirichlet inverse of A003958.

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 8, 4, 2, 1, 5, 1, 2, 2, 20, 1, 7, 1, 5, 2, 2, 1, 12, 6, 2, 15, 5, 1, 3, 1, 48, 2, 2, 2, 17, 1, 2, 2, 12, 1, 3, 1, 5, 7, 2, 1, 28, 8, 11, 2, 5, 1, 24, 2, 12, 2, 2, 1, 7, 1, 2, 7, 112, 2, 3, 1, 5, 2, 3, 1, 40, 1, 2, 11, 5, 2, 3, 1, 28, 54, 2, 1, 7, 2, 2, 2, 12, 1, 10, 2, 5, 2, 2, 2, 64, 1, 15
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e/p; d[1] = 0; d[n_] := n*Plus @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, MoebiusMu[#] * EulerPhi[#] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A097945(n) = (moebius(n)*eulerphi(n)); \\ Also Dirichlet inverse of A003958.
    A349620(n) = sumdiv(n,d,A003415(n/d)*A097945(d));

Formula

a(n) = Sum_{d|n} A003415(n/d) * A097945(d).

A351444 a(n) = n - A003958(n) + A003958(sigma(n)), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 2, 9, 3, 6, 2, 15, 17, 10, 3, 16, 7, 10, 9, 45, 5, 38, 5, 28, 10, 16, 3, 30, 39, 26, 23, 28, 9, 26, 2, 55, 15, 26, 13, 104, 19, 28, 21, 52, 13, 32, 11, 46, 53, 28, 3, 76, 49, 94, 23, 76, 9, 54, 19, 58, 25, 46, 9, 64, 31, 34, 51, 189, 29, 50, 17, 76, 27, 50, 5, 164, 37, 74, 73, 82, 19, 66, 5, 136
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Cf. A351446 (fixed points), A351443 (odd terms there).

Programs

Formula

a(n) = A322582(n) + A351442(n) = n - A003958(n) + A003958(sigma(n)).
a(n) = n + A351445(n).

A351456 a(n) = A003958(sigma(A003961(n))), where A003958 is multiplicative with a(p^e) = (p-1)^e, A003961 multiplicative with a(prime(k)^e) = prime(1+k)^e, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 2, 12, 1, 2, 2, 4, 30, 1, 6, 24, 4, 2, 2, 100, 4, 30, 2, 12, 4, 6, 8, 8, 36, 4, 24, 24, 1, 2, 18, 72, 12, 4, 2, 360, 12, 2, 8, 4, 10, 4, 2, 72, 30, 8, 8, 200, 108, 36, 8, 48, 8, 24, 6, 8, 4, 1, 30, 24, 16, 18, 60, 1092, 4, 12, 4, 48, 16, 2, 36, 120, 4, 12, 72, 24, 12, 8, 12, 100, 700, 10, 16, 48, 4, 2, 2, 24
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351456(n) = A003958(sigma(A003961(n)));

Formula

Multiplicative with a(p^e) = A003958(1 + q + ... + q^e), where q = nextPrime(p) = A151800(p).
a(n) = A351457(n) + A339905(n).

A353792 a(n) = A003958(sigma(n)) * A064989(sigma(n)).

Original entry on oeis.org

1, 4, 1, 30, 4, 4, 1, 48, 132, 16, 4, 30, 30, 4, 4, 870, 16, 528, 12, 120, 1, 16, 4, 48, 870, 120, 12, 30, 48, 16, 1, 480, 4, 64, 4, 3960, 306, 48, 30, 192, 120, 4, 70, 120, 528, 16, 4, 870, 1224, 3480, 16, 900, 64, 48, 16, 48, 12, 192, 48, 120, 870, 4, 132, 14238, 120, 16, 208, 480, 4, 16, 16, 6336, 1116, 1224, 870
Offset: 1

Views

Author

Antti Karttunen, May 11 2022

Keywords

Crossrefs

Cf. A046528 (positions of 1's).
Cf. also A353750.

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353792(n) = { my(s=sigma(n)); (A003958(s)*A064989(s)); };
    
  • PARI
    A353792(n) = { my(f=factor(n),s); prod(i=1, #f~, s = sigma(f[i,1]^f[i,2]); A003958(s)*A064989(s)); };

Formula

Multiplicative with a(p^e) = A003958(1 + p + ... + p^e) * A064989(1 + p + ... + p^e).
a(n) = A353791(A000203(n)).
a(n) = A351442(n) * A350073(n) = A003958(A000203(n)) * A064989(A000203(n)).

A345047 a(n) = A003958(n) / A345046(n), where A003958(n) is multiplicative with a(p^e) = (p-1)^e, and A345046(n) gives the least common multiple of the same factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 4, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 4, 1, 2, 1, 1, 4, 6, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2021

Keywords

Crossrefs

Cf. also A345045, A353784.

Programs

  • PARI
    A345047(n) = { my(f=factor(n)~, g=vector(#f, i, (f[1, i]-1)^f[2, i])); factorback(g)/lcm(g); };

Formula

a(n) = A003958(n) / A345046(n).

A348928 a(n) = gcd(n, A003958(n)), where A003958 is multiplicative with a(p^e) = (p-1)^e.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 5, 2, 3, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Differs from similar A126864 for the first time at n=36, where a(36) = 4, while A126864(36) = 2.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^e; a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A348928(n) = gcd(n, A003958(n));

Formula

a(n) = gcd(n, A003958(n)) = gcd(n, A322582(n)) = gcd(A003958(n), A322582(n)).

A349139 a(n) = Sum_{d|n} A322582(d) * A348507(n/d), where A322582(n) = n - A003958(n) and A348507(n) = A003959(n) - n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 8, 1, 2, 0, 18, 0, 2, 2, 41, 0, 22, 0, 22, 2, 2, 0, 98, 1, 2, 12, 26, 0, 40, 0, 172, 2, 2, 2, 148, 0, 2, 2, 130, 0, 48, 0, 34, 28, 2, 0, 426, 1, 34, 2, 38, 0, 158, 2, 162, 2, 2, 0, 278, 0, 2, 32, 645, 2, 64, 0, 46, 2, 56, 0, 706, 0, 2, 36, 50, 2, 72, 0, 590, 91, 2, 0, 350, 2, 2, 2, 226, 0, 348
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A322582 with A348507.
Question: Is a(n) >= A305809(n) for all n?

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p - 1)^e; s1[1] = 0; s1[n_] := n - Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p + 1)^e; s2[1] = 0; s2[n_] := Times @@ f2 @@@ FactorInteger[n] - n; a[n_] := DivisorSum[n, s1[#]*s2[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348507(n) = (A003959(n)-n);
    A349139(n) = sumdiv(n,d,A322582(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A322582(d) * A348507(n/d).

A351440 Numbers k for which A003958(sigma(k)) + A064989(sigma(k)) is equal to A003958(k) + A064989(k).

Original entry on oeis.org

1, 6, 28, 496, 8128, 30240, 32760, 240408, 2178540, 6828720, 13042080, 23569920, 33550336, 42402048, 45532800, 142990848, 1379454720
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Subsequence of A351446.
Subsequences: A000396, A336702.

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A064989(n) = { my(f = factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    isA351440(n) = { my(s=sigma(n)); ((A003958(s)+A064989(s)) == (A003958(n)+A064989(n))); };

A351447 Numbers k for which A003958(sigma(k)) = 2*A003958(k), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

2, 98, 120, 136, 312, 520, 672, 888, 1080, 1120, 1464, 1480, 1752, 2440, 2520, 2808, 2912, 2920, 3420, 3768, 3848, 4632, 5880, 6048, 6280, 6344, 6552, 6648, 6664, 7512, 7592, 7720, 7992, 8181, 8288, 8892, 9528, 10104, 10968, 11080, 12464, 12520, 12984, 13176, 13664, 14712, 15288
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Comments

Numbers k such that A351442(k) = 2*A003958(k).
In contrast, numbers x for which A064989(sigma(x)) = 2*A064989(x) seem to consist just of {2} followed by A005820: 2, 120, 672, 523776, ..., etc, which (also) contains as its subsequence all the odd terms of A336702 multiplied by 2.

Crossrefs

Subsequences: A005820 (3-perfect numbers), odd terms of A336702 doubled, the terms of A351443 doubled (2, 98, 81810, ...), A351448 (odd terms in this sequence).

Programs

Previous Showing 21-30 of 102 results. Next