cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 210 results. Next

A282894 Remainder when sum of first n terms of A004001 is divided by A004001(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4, 4, 6, 6, 6, 6, 6, 7, 9, 0, 0, 2, 5, 5, 8, 8, 8, 10, 10, 10, 10, 10, 9, 9, 10, 12, 15, 15, 18, 22, 3, 3, 7, 12, 12, 17, 17, 17, 21, 26, 26, 1, 1, 1, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 2, 0, 34, 35, 0, 2, 2, 4, 7, 11, 16, 16, 21, 27, 34, 34, 41, 2, 2, 9, 9, 9, 15, 22, 30, 30, 38, 47, 47, 2, 2, 2
Offset: 1

Views

Author

Altug Alkan, Feb 24 2017

Keywords

Examples

			a(6) = 1 since Sum_{k=1..6} A004001(k) = 1 + 1 + 2 + 2 + 3 + 4 = 13 and remainder when 13 is divided by A004001(6) = 4 is 1.
		

Crossrefs

Programs

  • Maple
    A004001:= proc(n) option remember; procname(procname(n-1)) +procname(n-procname(n-1)) end proc:
    A004001(1):= 1: A004001(2):= 1:
    L:= ListTools[PartialSums](map(A004001, [$1..1000])):
    seq(L[i] mod A004001(i), i=1..1000); # Robert Israel, Feb 26 2017
  • Mathematica
    a[1] = 1; a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; MapIndexed[Last@ QuotientRemainder[#1, a@ First@ #2] &, Accumulate@ Table[a@ n, {n, 96}]] (* Michael De Vlieger, Feb 24 2017, after Robert G. Wilson v at A004001 *)
  • PARI
    a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[a[n-1]]+a[n-a[n-1]]); vector(#a, n, sum(k=1, n, a[k]) % a[n])
    
  • PARI
    first(n)=my(v=vector(n),s); v[1]=v[2]=1; for(k=3, n, v[k]=v[v[k-1]]+v[k-v[k-1]]); for(k=1,n, s+=v[k]; v[k]=s%v[k]); v \\ Charles R Greathouse IV, Feb 26 2017

Formula

a(n) = (Sum_{k=1..n} A004001(k)) mod A004001(n).

A283482 Positions of even terms in A004001.

Original entry on oeis.org

3, 4, 6, 7, 8, 10, 13, 14, 15, 16, 18, 20, 21, 23, 24, 28, 29, 30, 31, 32, 34, 36, 39, 41, 42, 44, 45, 49, 52, 53, 54, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 73, 75, 76, 78, 81, 84, 85, 86, 88, 91, 94, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 113, 114, 115, 116, 122, 123, 124, 125, 126, 127, 128, 130, 132, 134, 137, 139, 141, 142, 144
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Crossrefs

Cf. A283481 (complement), A283471 (a subsequence).
Positions of zeros in A095901.
Cf. A004001.

Programs

A283677 a(n) = lcm(b(b(n)), b(n-b(n)+1)) where b(n) = A004001(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 6, 3, 12, 12, 4, 4, 4, 4, 20, 5, 30, 35, 35, 42, 24, 24, 56, 56, 56, 8, 8, 8, 8, 8, 72, 9, 90, 99, 36, 36, 60, 130, 70, 70, 154, 165, 165, 60, 60, 60, 195, 208, 208, 112, 112, 112, 240, 240, 240, 240, 16, 16, 16, 16, 16, 16, 272, 17, 306, 323, 340, 357, 357, 126, 198, 414, 72, 72, 456, 475, 494
Offset: 1

Views

Author

Altug Alkan, Mar 14 2017

Keywords

Comments

See the order of certain subsequences in scatterplot link.

Examples

			a(4) = lcm(A004001(A004001(4)), A004001(4-A004001(4)+1)) = lcm(1, 2) = 2.
		

Crossrefs

Cf. also A283470, A283673.

Programs

  • Mathematica
    b[1] = b[2] = 1; b[n_] := b[n] = b[b[n - 1]] + b[n - b[n - 1]]; Table[LCM[b[b[n]], b[n + 1 - b[n]]], {n, 1, 78}] (* Indranil Ghosh, Mar 14 2017 *)
  • PARI
    a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[a[n-1]]+a[n-a[n-1]]); va = vector(1000, n, lcm(a[a[n]], a[n+1-a[n]]))
    
  • Scheme
    (define (A283677 n) (lcm (A004001 (A004001 n)) (A004001 (+ 1 (- n (A004001 n)))))) ;; (Code for A004001 given under that entry). - Antti Karttunen, Mar 18 2017

Formula

a(n) = lcm(A004001(A004001(n)), A004001(A080677(n))). - Antti Karttunen, Mar 18 2017

A088491 a(n) = floor(p(n)/p(n-1)), where p(n) = n!/(Product_{j=1..floor(n/2)} A004001(j)).

Original entry on oeis.org

2, 3, 4, 5, 3, 7, 4, 9, 3, 11, 3, 13, 3, 15, 4, 17, 3, 19, 3, 21, 3, 23, 3, 25, 3, 27, 3, 29, 3, 31, 4, 33, 3, 35, 3, 37, 3, 39, 3, 41, 3, 43, 3, 45, 3, 47, 3, 49, 3, 51, 3, 53, 3, 55, 3, 57, 3, 59, 3, 61, 3, 63, 4, 65, 3, 67, 3, 69, 3, 71, 3, 73, 3, 75, 3, 77, 3, 79, 3, 81, 3, 83, 3, 85, 3, 87
Offset: 2

Views

Author

Roger L. Bagula, Nov 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Conway[n_]:= Conway[n]= If[n<3, 1, Conway[Conway[n-1]] +Conway[n-Conway[n-1]]];
    f[n_]:= f[n]= Product[Conway[i], {i,Floor[n/2]}];
    a[n_]:= a[n]= Floor[n*f[n-1]/f[n]];
    Table[a[n], {n, 2, 100}] (* modified by G. C. Greubel, Mar 27 2022 *)
  • Sage
    @CachedFunction
    def b(n): # A004001
        if (n<3): return 1
        else: return b(b(n-1)) + b(n-b(n-1))
    def f(n): return product( b(j) for j in (1..(n//2)) )
    def A088491(n): return (n*f(n-1)//f(n))
    [A088491(n) for n in (2..100)] # G. C. Greubel, Mar 27 2022

Formula

a(n) = floor(p(n)/p(n-1)), where p(n) = n!/(Product_{j=1..floor(n/2)} A004001(j)).

Extensions

Edited by G. C. Greubel, Mar 27 2022

A120475 a(n) = Sum_{m=1..n} A000045(m)*(A004001(m+1) - 2*A004001(m) + A004001(m-1)).

Original entry on oeis.org

-1, 0, -2, 1, 1, -7, -7, 14, 14, 14, -75, 69, -164, -164, -164, 823, 823, 823, 823, -5942, 5004, 5004, -23653, 22715, -52310, -52310, 144108, -173703, -173703, -173703, -173703, 2004606, 2004606, 2004606, 2004606, 2004606, -22153211, 16934958, 16934958, 16934958, -148645183, 119269113
Offset: 1

Views

Author

Roger L. Bagula, Jul 07 2006

Keywords

Crossrefs

Programs

  • Maple
    A000045 := proc(n) option remember ; combinat[fibonacci](n) ; end: A004001 := proc(n) option remember ; if n <= 0 then 0 ; elif n <= 2 then 1; else A004001(A004001(n-1))+A004001(n-A004001(n-1)) ; fi ; end: A120475 := proc(n) add( A000045(m)*(A004001(m+1)-2*A004001(m)+A004001(m-1)),m=1..n) ; end: seq(A120475(n),n=1..80) ; # R. J. Mathar, Sep 18 2007
  • Mathematica
    Conway[0] = 0; Conway[1] = Conway[2] = 1; Conway[n_Integer?Positive] := Conway[n] = Conway[Conway[n - 1]] + Conway[n - Conway[n - 1]]; a[n_] := Fibonacci[n]*(Conway[n + 1] - 2*Conway[n] + Conway[n - 1]); Table[Sum[a[m], {m, 1, n}], {n, 1, 30}]

Extensions

Edited by N. J. A. Sloane, Aug 14 2006
More terms from R. J. Mathar, Sep 18 2007

A135688 a(n) = A004001(n)*a(n-1) + a(n-2), for n > 2, with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 3, 7, 24, 103, 436, 1847, 9671, 59873, 428782, 3061347, 24919558, 202417811, 1644262046, 13356514179, 121852889657, 1231885410749, 13672592407896, 165302994305501, 1997308524073908, 26130313807266305, 367821701825802178
Offset: 1

Views

Author

Roger L. Bagula, Feb 19 2008

Keywords

Crossrefs

Programs

  • Mathematica
    HC[n_]:= HC[n]= If[n<3, Fibonacci[n], HC[HC[n-1]] +HC[n -HC[n-1]]]; (*A004001*)
    a[n_] := a[n] = If[n<3, 1, HC[n]*a[n-1] + a[n-2]];
    Table[a[n], {n, 40}]
  • Sage
    @cached_function
    def HC(n): # HC = A004001
        if (n<3): return fibonacci(n)
        else: return HC(HC(n-1)) +HC(n -HC(n-1))
    @CachedFunction
    def a(n): # A135688
        if (n<3): return 1
        else: return HC(n)*a(n-1) + a(n-2)
    [a(n) for n in (1..40)] # G. C. Greubel, Nov 25 2021

Formula

a(n) = A004001(n)*a(n-1) + a(n-2), for n > 2, with a(1) = a(2) = 1.

Extensions

Edited and corrected by Eric M. Schmidt, Dec 21 2014

A174232 a(n) = a(n-1) - (-1)^n*n if (A004001(n) mod 3) = 1, otherwise a(n-1) + (-1)^n*n.

Original entry on oeis.org

1, 0, -2, -5, -1, -6, -12, -5, -13, -22, -12, -1, -13, -26, -12, -27, -11, -28, -46, -65, -45, -66, -88, -111, -87, -112, -86, -113, -141, -112, -142, -111, -143, -176, -142, -107, -71, -108, -70, -31, 9, -32, 10, 53, 97, 52, 98, 51, 99, 148, 198, 147, 199, 146
Offset: 0

Views

Author

Roger L. Bagula, Mar 13 2010

Keywords

Crossrefs

Programs

  • Mathematica
    HC[n_]:= HC[n]= If[n<3, Fibonacci[n], HC[HC[n-1]] +HC[n -HC[n-1]]]; (*A004001*)
    a[n_]:= a[n]= If[n<2, 1-n, If[Mod[HC[n], 3]==1, a[n-1] -(-1)^n*n, a[n-1] + (-1)^n*n]];
    Table[a[n], {n,0,80}]
  • Sage
    @CachedFunction
    def HC(n): # HC = A004001
        if (n<3): return fibonacci(n)
        else: return HC(HC(n-1)) +HC(n -HC(n-1))
    def A174232(n):
        if (n<2): return 1-n
        elif (HC(n)%3==1): return A174232(n-1) - (-1)^n*n
        else: return A174232(n-1) + (-1)^n*n
    [A174232(n) for n in (0..80)] # G. C. Greubel, Nov 24 2021

Formula

a(n) = a(n-1) - (-1)^n*n if (A004001(n) mod 3) = 1, otherwise a(n-1) + (-1)^n*n, with a(0) = 1 and a(1) = 0.

Extensions

Edited by G. C. Greubel, Nov 24 2021

A266349 a(n) = 1 + A053644(n) - A004001(n+1) = 1 + A072376(n) - A266348(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 8, 7, 6, 5, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 16, 15, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 7, 6, 6, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 32, 31, 30, 29, 28, 27, 27, 26, 25, 24, 23, 23, 22, 21, 20, 20, 19, 18, 18, 17, 17, 17, 16, 15, 14, 14, 13, 12, 12, 11, 11, 11, 10
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2016

Keywords

Comments

Used in a recursive formula of A265754.

Crossrefs

Programs

  • Mathematica
    b[1] = 1; b[2] = 1; b[n_] := b[n] = b[b[n - 1]] + b[n - b[n - 1]]; Table[1 + 2^(Ceiling@ Log2[n + 1] - 1) - b[n + 1], {n, 96}] (* Michael De Vlieger, Jan 26 2016, after Robert G. Wilson v at A004001 *)

Formula

a(n) = 1 + A053644(n) - A004001(n+1).
a(n) = 1 + A072376(n) - A266348(n).

A283501 Remainder when sum of first n terms of A004001 is divided by 2*n.

Original entry on oeis.org

1, 2, 4, 6, 9, 1, 3, 5, 8, 12, 17, 22, 2, 6, 10, 14, 19, 25, 32, 0, 6, 13, 21, 29, 38, 47, 2, 10, 18, 26, 34, 42, 51, 61, 2, 12, 23, 34, 46, 59, 73, 3, 16, 30, 44, 59, 74, 89, 7, 22, 37, 53, 69, 85, 102, 7, 22, 37, 53, 69, 85, 101, 117, 5, 20, 36, 53, 71, 90, 110, 130, 7, 27
Offset: 1

Views

Author

Altug Alkan, Mar 09 2017

Keywords

Comments

Sequence represents b(n, 2) where b(n, i) = (Sum_{k=1..n} A004001(k)) mod (n*i). See also A282891 and corresponding illustration in Links section.

Examples

			a(6) = 1 since Sum_{k=1..6} A004001(k) = 1 + 1 + 2 + 2 + 3 + 4 = 13 and remainder when 13 is divided by 12 is 1.
		

Crossrefs

Programs

  • Maple
    A004001:= proc(n) option remember; procname(procname(n-1)) +procname(n-procname(n-1)) end proc:
    A004001(1):= 1: A004001(2):= 1:
    L:= ListTools[PartialSums](map(A004001, [$1..1000])):
    seq(L[i] mod (2*i), i=1..1000); # after Robert Israel at A282891
  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; Table[Mod[Total@ Array[a, n], 2 n], {n, 73}] (* Michael De Vlieger, Mar 13 2017, after Robert G. Wilson v at A004001 *)
  • PARI
    a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[a[n-1]]+a[n-a[n-1]]); vector(#a, n, sum(k=1, n, a[k]) % (2*n))

Formula

a(n) = (Sum_{k=1..n} A004001(k)) mod (2*n).

A283655 a(n) = b(b(n+1)) - b(n-b(n)+1) where b(n) = A004001(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Altug Alkan, Mar 13 2017

Keywords

Examples

			a(1) = 0 since a(1) = A004001(A004001(2)) - A004001(1-A004001(1)+1) = 1 - 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    b[1] = 1; b[2] = 1; b[n_] := b[n] = b[b[n - 1]] + b[n - b[n - 1]]; a[n_] := b[b[n + 1]] - b[n - b[n] + 1]; Array[a, 100] (* Robert G. Wilson v, Mar 13 2017 *)
  • PARI
    a=vector(1001); a[1]=a[2]=1; for(n=3, #a, a[n]=a[a[n-1]]+a[n-a[n-1]]); va = vector(1000, n, a[a[n+1]]-a[n+1-a[n]])
Previous Showing 51-60 of 210 results. Next