cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A226828 Numbers of the form 4^j + 9^k, for j and k >= 0.

Original entry on oeis.org

2, 5, 10, 13, 17, 25, 65, 73, 82, 85, 97, 145, 257, 265, 337, 730, 733, 745, 793, 985, 1025, 1033, 1105, 1753, 4097, 4105, 4177, 4825, 6562, 6565, 6577, 6625, 6817, 7585, 10657, 16385, 16393, 16465, 17113, 22945, 59050, 59053, 59065, 59113, 59305, 60073, 63145
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 4; b = 9; mx = 70000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226830 Numbers of the form 6^j + 9^k, for j and k >= 0.

Original entry on oeis.org

2, 7, 10, 15, 37, 45, 82, 87, 117, 217, 225, 297, 730, 735, 765, 945, 1297, 1305, 1377, 2025, 6562, 6567, 6597, 6777, 7777, 7785, 7857, 8505, 14337, 46657, 46665, 46737, 47385, 53217, 59050, 59055, 59085, 59265, 60345, 66825, 105705, 279937, 279945, 280017
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 6; b = 9; mx = 300000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A262251 Triangular numbers representable as 2^x + 3^y.

Original entry on oeis.org

3, 10, 28, 91
Offset: 1

Views

Author

Alex Ratushnyak, Sep 16 2015

Keywords

Comments

No other terms such that 0 <= x,y < 2000.
No other terms such that 0 <= x,y < 5250. - Michael S. Branicky, Mar 10 2021

Examples

			a(1) = 3 = 2^1 + 3^0.
a(4) = 91 = 2^6 + 3^3.
		

Crossrefs

Intersection of A000217 and A004050.

Programs

  • PARI
    isok(t) = {for (k=0, logint(t, 2), my(tt = t - 2^k); if (tt, p = valuation(tt, 3); if (tt == 3^p, return(1))););}
    lista(nn) = for (n=1, nn, if (isok(t=n*(n+1)/2), print1(t, ", "))); \\ Michel Marcus, Sep 20 2015
    
  • PARI
    select(x->ispolygonal(x, 3), setbinop(f, [0..20], [0..20])) \\ Michel Marcus, Mar 10 2021
    
  • Python
    from sympy import integer_nthroot
    def auptoexponent(maxexp):
      sums = set(2**x + 3**y for x in range(maxexp) for y in range(maxexp))
      iroots = set(integer_nthroot(2*s, 2)[0] for s in sums)
      return sorted(set(r*(r+1)//2 for r in iroots if r*(r+1)//2 in sums))
    print(auptoexponent(500)) # Michael S. Branicky, Mar 10 2021

A346676 Numbers expressible as 2^x + 3^y where both x and y are positive integers.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 25, 29, 31, 35, 41, 43, 59, 67, 73, 83, 85, 89, 91, 97, 113, 131, 137, 145, 155, 209, 245, 247, 251, 259, 265, 275, 283, 307, 337, 371, 499, 515, 521, 539, 593, 731, 733, 737, 745, 755, 761, 793, 857, 985, 1027, 1033, 1051, 1105, 1241
Offset: 1

Views

Author

Keith Backman, Jul 28 2021

Keywords

Comments

All terms have the form 6k +- 1.

Crossrefs

Programs

  • PARI
    f(x,y) = 2^x + 3^y;
    lista(nn) = select(x->(x<=nn), setbinop(f, [1..logint(nn, 2)], [1..logint(nn, 3)])); \\ Michel Marcus, Jul 29 2021
    
  • Python
    def aupto(lim):
        s, pow3 = set(), 3
        while pow3 < lim:
            for j in range(1, (lim-pow3).bit_length()):
                s.add(2**j + pow3)
            pow3 *= 3
        return sorted(set(s))
    print(aupto(1242)) # Michael S. Branicky, Jul 29 2021

Formula

{ A004050 } minus { A000079, A000244 }.
Previous Showing 31-34 of 34 results.