cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A300659 Product of digits of n!.

Original entry on oeis.org

1, 1, 2, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Jaroslav Krizek, Jun 05 2018

Keywords

Comments

Also multiplicative digital root of n!.
Decimal expansion of 2817/25000. - Eric Chen, Jun 06 2018

Crossrefs

Programs

  • Magma
    [&*Intseq(Factorial(n)): n in [0..100]];
    
  • Mathematica
    Array[Times @@ IntegerDigits[#!] &, 105] (* Michael De Vlieger, Jun 06 2018 *)
  • PARI
    a(n) = my(d=digits(n!)); prod(k=1, #d, d[k]); \\ Michel Marcus, Jun 05 2018

Formula

G.f.: 1 + x + 2*x^2 + 6*x^3 + 8*x^4.
a(n) = 0 for n >= 5.
a(n) = A031347(A000142(n)).
a(n) = A007954(A000142(n)). - Eric Chen, Jun 06 2018

A349597 a(n) is the sum of digits of a(n-1)! with a(1) = 3.

Original entry on oeis.org

3, 6, 9, 27, 108, 666, 6327, 88263, 1692585, 42219558, 1318791681
Offset: 1

Views

Author

Arkady Pogostkin, Nov 22 2021

Keywords

Crossrefs

Subsequence of A008585.
Cf. A004152.

Programs

  • Mathematica
    nterms=10;NestList[Total[IntegerDigits[#!]]&,3,nterms-1] (* Paolo Xausa, Nov 30 2021 *)

Formula

a(n) = sumdigits(a(n-1)!) for n > 1.

Extensions

a(10)-a(11) from Amiram Eldar, Nov 23 2021

A350211 Numbers k such that the arithmetic mean of the digits of k! is an integer.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 12, 26, 28, 32, 59, 262, 391, 533, 579
Offset: 1

Views

Author

Zachary M Franco, Dec 19 2021

Keywords

Comments

A heuristic argument suggests that this short list is complete. By Stirling's approximation, n! has order n*log(n) digits of which n/4 are terminal zeros. If the remaining digits are random, the mean will be just below 4.5. For n > 6, n! and also its digits sum are divisible by 9. 12! is the only factorial with 9 digits. The others have 27, 30, 36, 81, 522, 846, 1224, and 1350 digits, respectively.

Examples

			4 is a term because 4! = 24 and (2+4)/2 = 3 is an integer.
		

Crossrefs

Programs

  • Maple
    q:= n-> (f-> (add(i, i=convert(f, base, 10))/length(f))::integer)(n!):
    select(q, [$0..1000])[];  # Alois P. Heinz, Dec 19 2021
  • Mathematica
    Do[If[IntegerQ[Mean[IntegerDigits[n!]]], Print[n, " ", Mean[IntegerDigits[n!]]]], {n, 1, 100000}]
  • PARI
    isok(k) = my(d=digits(k!)); (vecsum(d) % #d) == 0; \\ Michel Marcus, Dec 19 2021
Previous Showing 21-23 of 23 results.