cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A178364 Numbers with rounded up arithmetic mean of digits = 4.

Original entry on oeis.org

4, 16, 17, 25, 26, 34, 35, 43, 44, 52, 53, 61, 62, 70, 71, 80, 109, 118, 119, 127, 128, 129, 136, 137, 138, 145, 146, 147, 154, 155, 156, 163, 164, 165, 172, 173, 174, 181, 182, 183, 190, 191, 192, 208, 209, 217, 218, 219, 226, 227, 228, 235, 236, 237, 244, 245
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A004427(a(n)) = 4;
A000027 = union of A178361, A178362, A178363, A178365, A178366, A178367, A178368, A178369, and this sequence.

Programs

  • Mathematica
    Select[Range[250],Ceiling[Mean[IntegerDigits[#]]]==4&] (* Harvey P. Dale, Sep 30 2011 *)

A178365 Numbers with rounded up arithmetic mean of digits = 5.

Original entry on oeis.org

5, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 63, 64, 72, 73, 81, 82, 90, 91, 139, 148, 149, 157, 158, 159, 166, 167, 168, 175, 176, 177, 184, 185, 186, 193, 194, 195, 229, 238, 239, 247, 248, 249, 256, 257, 258, 265, 266, 267, 274, 275, 276, 283, 284, 285, 292
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A004427(a(n)) = 5;
A000027 = union of A178361, A178362, A178363, A178364, A178366, A178367, A178368, A178369, and this sequence.

A178366 Numbers with rounded up arithmetic mean of digits = 6.

Original entry on oeis.org

6, 29, 38, 39, 47, 48, 56, 57, 65, 66, 74, 75, 83, 84, 92, 93, 169, 178, 179, 187, 188, 189, 196, 197, 198, 259, 268, 269, 277, 278, 279, 286, 287, 288, 295, 296, 297, 349, 358, 359, 367, 368, 369, 376, 377, 378, 385, 386, 387, 394, 395, 396, 439, 448, 449, 457
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A004427(a(n)) = 6;
A000027 = union of A178361, A178362, A178363, A178364, A178365, A178367, A178368, A178369, and this sequence.

Crossrefs

Programs

  • Python
    def ok(n): s = str(n); return 5*len(s) < sum(map(int, s)) <= 6*len(s)
    print(list(filter(ok, range(458)))) # Michael S. Branicky, Jun 29 2021

A178367 Numbers with rounded up arithmetic mean of digits = 7.

Original entry on oeis.org

7, 49, 58, 59, 67, 68, 76, 77, 85, 86, 94, 95, 199, 289, 298, 299, 379, 388, 389, 397, 398, 399, 469, 478, 479, 487, 488, 489, 496, 497, 498, 559, 568, 569, 577, 578, 579, 586, 587, 588, 595, 596, 597, 649, 658, 659, 667, 668, 669, 676, 677, 678, 685, 686, 687
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A004427(a(n)) = 7;
A000027 = union of A178361, A178362, A178363, A178364, A178365, A178366, A178368, A178369, and this sequence.

Programs

  • Mathematica
    Select[Range[700],Ceiling[Mean[IntegerDigits[#]]]==7&] (* Harvey P. Dale, Aug 21 2019 *)

A178368 Numbers with rounded up arithmetic mean of digits = 8.

Original entry on oeis.org

8, 69, 78, 79, 87, 88, 96, 97, 499, 589, 598, 599, 679, 688, 689, 697, 698, 699, 769, 778, 779, 787, 788, 789, 796, 797, 798, 859, 868, 869, 877, 878, 879, 886, 887, 888, 895, 896, 897, 949, 958, 959, 967, 968, 969, 976, 977, 978, 985, 986, 987, 994, 995, 996
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A004427(a(n)) = 8;
A000027 = union of A178361, A178362, A178363, A178364, A178365, A178366, A178367, A178369, and this sequence.

Programs

  • Mathematica
    Select[Range[1000],Ceiling[Mean[IntegerDigits[#]]]==8&] (* Harvey P. Dale, Oct 11 2011 *)

A178369 Numbers with rounded up arithmetic mean of digits = 9.

Original entry on oeis.org

9, 89, 98, 99, 799, 889, 898, 899, 979, 988, 989, 997, 998, 999, 6999, 7899, 7989, 7998, 7999, 8799, 8889, 8898, 8899, 8979, 8988, 8989, 8997, 8998, 8999, 9699, 9789, 9798, 9799, 9879, 9888, 9889, 9897, 9898, 9899, 9969, 9978, 9979, 9987, 9988, 9989, 9996
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A004427(a(n)) = 9;
A000027 = union of A178361, A178362, A178363, A178364, A178365, A178366, A178367, A178368, and this sequence.

Programs

  • Mathematica
    Select[Range[10000],Ceiling[Mean[IntegerDigits[#]]]==9&] (* Harvey P. Dale, Apr 25 2014 *)

A178362 Numbers with rounded up arithmetic mean of digits = 2.

Original entry on oeis.org

2, 12, 13, 21, 22, 30, 31, 40, 103, 104, 105, 112, 113, 114, 121, 122, 123, 130, 131, 132, 140, 141, 150, 202, 203, 204, 211, 212, 213, 220, 221, 222, 230, 231, 240, 301, 302, 303, 310, 311, 312, 320, 321, 330, 400, 401, 402, 410, 411, 420, 500, 501, 510, 600
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A004427(a(n)) = 2;
A000027 = union of A178361, A178363, A178364, A178365, A178366, A178367, A178368, A178369, and this sequence.

Programs

  • Mathematica
    Select[Range[600],Ceiling[Mean[IntegerDigits[#]]]==2&] (* Harvey P. Dale, Aug 10 2012 *)

A371383 a(n) is the numerator of the arithmetic mean of the digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8, 4, 9, 5, 11, 6
Offset: 0

Views

Author

Stefano Spezia, Mar 20 2024

Keywords

Crossrefs

Cf. A004426, A004427, A007953, A055642, A061383, A371384 (denominator).

Programs

  • Mathematica
    a[n_]:=Numerator[Mean[IntegerDigits[n]]]; Array[a,85,0]
  • Python
    from math import gcd
    def A371383(n): return (l:=sum(map(int,(s:=str(n)))))//gcd(l,len(s)) # Chai Wah Wu, Mar 22 2024

A371384 a(n) is the denominator of the arithmetic mean of the digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Stefano Spezia, Mar 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Denominator[Mean[IntegerDigits[n]]]; Array[a,90,0]
  • Python
    from math import gcd
    def A371384(n): return (l:=len(s:=str(n)))//gcd(l,sum(map(int,s))) # Chai Wah Wu, Mar 22 2024

A175688 Numbers k with property that arithmetic mean of its digits is both an integer and one of the digits of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 102, 111, 120, 123, 132, 135, 147, 153, 159, 174, 195, 201, 204, 210, 213, 222, 231, 234, 240, 243, 246, 258, 264, 285, 306, 312, 315, 321, 324, 333, 342, 345, 351, 354, 357, 360, 369, 375, 396, 402
Offset: 1

Views

Author

Claudio Meller, Aug 09 2010

Keywords

Comments

Subsequence of A061383.
A180160(a(n)) = 0. - Reinhard Zumkeller, Aug 15 2010

Examples

			135 is in the list because (1+3+5)/3 = 3 and 3 is a digit of 135.
		

Crossrefs

Programs

  • Haskell
    a175688 n = a175688_list !! (n-1)
    a175688_list = filter f [0..] where
       f x = m == 0 && ("0123456789" !! avg) `elem` show x
             where (avg, m) = divMod (a007953 x) (a055642 x)
    -- Reinhard Zumkeller, Jun 18 2013
  • Mathematica
    idQ[n_]:=Module[{idn=IntegerDigits[n],m},m=Mean[idn];IntegerQ[m] && MemberQ[idn,m]]; Select[Range[0,500],idQ] (* Harvey P. Dale, Jun 10 2011 *)

Extensions

Edited by Reinhard Zumkeller, Aug 13 2010
Previous Showing 11-20 of 28 results. Next