A316833 Sums of four distinct odd squares.
84, 116, 140, 156, 164, 180, 196, 204, 212, 228, 236, 244, 252, 260, 276, 284, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 396, 404, 420, 428, 436, 444, 452, 460, 468, 476, 484, 492, 500, 508, 516, 524, 532, 540, 548, 556, 564, 572, 580, 588, 596, 604, 612, 620, 628, 636, 644, 652, 660
Offset: 1
Keywords
References
- R. William Gosper and Stephen K. Lucas, Postings to Math Fun Mailing List, July 19 2018
- Michael D. Hirschhorn, The Power of q: A Personal Journey, Springer 2017. See Chapter 31.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # to get all terms <= N V:= Vector(N): for a from 1 to floor(sqrt(N/4)) by 2 do for b from a+2 to floor(sqrt((N-a^2)/3)) by 2 do for c from b+2 to floor(sqrt((N-a^2-b^2)/2)) by 2 do for d from c + 2 by 2 do r:= a^2+b^2+c^2+d^2; if r > N then break fi; V[r]:= V[r]+1 od od od od: select(t -> V[t]>=1, [$1..N]); # Robert Israel, Jul 20 2018
Comments