A277857 Numbers that are the sum of 2 squares with a unique partition and also the sum of 3 nonnegative cubes with a unique partition.
1, 2, 8, 9, 10, 16, 17, 29, 36, 64, 72, 73, 80, 81, 128, 136, 153, 160, 197, 218, 232, 244, 277, 281, 288, 314, 349, 397, 405, 433, 466, 468, 512, 514, 521, 557, 576, 577, 584, 586, 593, 637, 640, 648, 701, 738, 757, 794, 801, 853, 857, 881, 882, 953, 980, 1024, 1028, 1088, 1152, 1217, 1224, 1249, 1268, 1280, 1332, 1341, 1396
Offset: 1
Keywords
Examples
a(1) = 1 because 1 = 0^2 + 1^2 and 1 = 0^3 + 0^3 + 1^3; a(2) = 2 because 2 = 1^2 + 1^2 and 2 = 0^3 + 1^3 + 1^3; a(3) = 8 because 8 = 2^2 + 2^2 and 8 = 0^3 + 0^3 + 2^3; a(4) = 9 because 9 = 0^2 + 3^2 and 9 = 0^3 + 1^3 + 2^3; a(5) = 10 because 10 = 1^2 + 3^2 and 10 = 1^3 + 1^3 + 2^3, etc.
Links
Programs
-
Mathematica
Select[Range[1400], Length[PowersRepresentations[#1, 2, 2]] == 1 && Length[PowersRepresentations[#1, 3, 3]] == 1 & ]
Comments