cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A376835 Expansion of 1/((1-x)^4 - 8*x^4)^(1/4).

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 31, 71, 151, 343, 871, 2311, 6001, 15081, 37493, 94381, 241931, 625771, 1617211, 4164763, 10719793, 27674473, 71722773, 186353453, 484657729, 1260984161, 3283294561, 8559401761, 22343836711, 58391858383, 152722920691, 399719304411
Offset: 0

Views

Author

Seiichi Manyama, Oct 06 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= 1/((1-x)^4 - 8*x^4)^(1/4):
    S:= series(f,x,41):
    seq(coeff(S,x,i),i=0..40); # Robert Israel, Oct 06 2024
  • Mathematica
    a[n_]:=Sum[(-8)^k * Binomial[-1/4,k] * Binomial[n,n-4*k],{k,0,Floor[n/4]}]; Array[a,32,0] (* Stefano Spezia, Oct 06 2024 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1-x)^4-8*x^4)^(1/4))

Formula

a(n) = Sum_{k=0..floor(n/4)} (-8)^k * binomial(-1/4,k) * binomial(n,n-4*k).
(7 + 7*n)*a(n) + (7 + 4*n)*a(n + 1) - (15 + 6*n)*a(n + 2) + (13 + 4*n)*a(n + 3) - (n + 4)*a(n + 4) = 0. - Robert Israel, Oct 06 2024

A224882 G.f.: 1/(1 - 32*x)^(1/16).

Original entry on oeis.org

1, 2, 34, 748, 18326, 476476, 12864852, 356540184, 10072260198, 288738125676, 8373405644604, 245112419778408, 7230816383463036, 214699624924363992, 6410317372741724904, 192309521182251747120, 5793324325615333881990, 175162864903898918549580
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 34*x^2 + 748*x^3 + 18326*x^4 + 476476*x^5 +...
where
A(x)^16 = 1 + 32*x + 1024*x^2 + 32768*x^3 + 1048576*x^4 +...+ 32^n*x^n +...
Also,
A(x)^8 = 1 + 16*x + 384*x^2 + 10240*x^3 + 286720*x^4 +...+ 8^n*A000984(n)*x^n +...
A(x)^4 = 1 + 8*x + 160*x^2 + 3840*x^3 + 99840*x^4 +...+ 4^n*A004981(n)*x^n +...
A(x)^2 = 1 + 4*x + 72*x^2 + 1632*x^3 + 40800*x^4 +...+ 2^n*A224881(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-32*x)^(1/16), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
  • PARI
    {a(n)=polcoeff(1/(1-32*x +x*O(x^n))^(1/16),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=(2^n/n!)*prod(k=0, n-1, 16*k + 1)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = (2^n/n!) * Product_{k=0..n-1} (16*k + 1).
a(n) ~ 32^n/(GAMMA(1/16)*n^(15/16)). - Vaclav Kotesovec, Jul 24 2013
Previous Showing 21-22 of 22 results.