cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A385149 Number of chiral pairs of asymmetric polyominoes with n cells of the regular tiling with Schläfli symbol {4,oo}.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 43, 225, 1162, 6081, 32315, 174856, 961764, 5369567, 30373643, 173811011, 1004802212, 5861460314, 34468644574, 204161097084, 1217143092549, 7299002607829, 44005589820244, 266608357403244, 1622502342468552, 9914884364399700
Offset: 0

Views

Author

Robert A. Russell, Jun 19 2025

Keywords

Comments

A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			 __ __ __    __ __ __
|__|__|__|  |__|__|__|  a(4) = 1.
      |__|  |__|
		

Crossrefs

Cf. A005034 (oriented), A005036 (unoriented), A369315 (chiral), A047749 (achiral), A001764 (rooted).

Programs

  • Mathematica
    Table[If[n<4,0,(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1) + Switch[Mod[n,4], 0,4Binomial[3n/4,n/4]/(n/2+1)-6Binomial[3n/2,n/2]/(n+1), 1,(4Binomial[(3n-3)/4,(n-1)/4]-10Binomial[(3n-1)/2,(n-1)/2])/(n+1)+(8Binomial[(3n+1)/4,(n-1)/4]+16Binomial[(3n-3)/4,(n-5)/4])/(n+3), 2,16Binomial[(3n-2)/4,(n-2)/4]/(n+2)-6Binomial[3n/2,n/2]/(n+1), 3,24Binomial[(3n-1)/4,(n-3)/4]/(n+3)-10Binomial[(3n-1)/2,(n-1)/2]/(n+1)])/8],{n,0,30}]

Formula

G.f.: (3*G(z) - G(z)^2 - 6*G(z^2) - 5z*G(z^2)^2 + 4*G(z^4) + 2z*G(z^4) + 2z*G(z^4)^2 + 4z^2*G(z^4)^2 + 4z^3*G(z^4)^3 + 2z^5*G(z^4)^4) / 8, where G(z)=1+z*G(z)^3 is the g.f. for A001764.

A296533 Number of nonequivalent noncrossing trees with n edges up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 3, 7, 28, 108, 507, 2431, 12441, 65169, 351156, 1926372, 10746856, 60762760, 347664603, 2009690895, 11723160835, 68937782355, 408323575275, 2434289046255, 14598013278960, 88011196469040, 533216762488020, 3245004785069892, 19829769013792908
Offset: 0

Views

Author

Andrew Howroyd, Dec 14 2017

Keywords

Comments

The number of all noncrossing trees with n edges is given by A001764.
The number of nodes will be n + 1.

Examples

			Case n=3:
   o---o   o---o   o---o
   |       | \       \
   o---o   o   o   o---o
In total there are 3 distinct noncrossing trees up to rotation and reflection.
		

Crossrefs

Cf. A001764, A005034, A006013, A296532 (up to rotation only).

Programs

  • Mathematica
    a[n_] := (If[OddQ[n], 3*Binomial[(1/2)*(3*n - 1), (n - 1)/2], Binomial[3*n/2, n/2]] + Binomial[3*n, n]/(2*n + 1))/(2*(n + 1));
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 27 2017, after Andrew Howroyd *)
  • PARI
    a(n)={(binomial(3*n, n)/(2*n+1) + if(n%2, 3*binomial((3*n-1)/2, (n-1)/2),  binomial(3*n/2, n/2)))/(2*(n+1))}

Formula

a(2n) = (A296532(2n) + A001764(n))/2, a(2n-1) = (A296532(2n-1) + A006013(n-1))/2.
a(2n) = A005034(2n).

A317184 Number of "non-connected" chord diagrams of degree n.

Original entry on oeis.org

0, 1, 3, 12, 74, 647, 6961, 89739, 1337152, 22609111, 427604861, 8945156182, 205080060435, 5113424483894, 137759755603055, 3987742282544259, 123430664010624370, 4067922952436728611, 142218912116692593949
Offset: 1

Views

Author

N. J. A. Sloane, Jul 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Stoimenow states that a Mma package is available from his website.

Extensions

More terms from Sean A. Irvine, Feb 04 2019
Previous Showing 11-13 of 13 results.