A178147 Sum of squares d^2 of distinct divisors of n, d in {2, 3, 5}.
0, 4, 9, 4, 25, 13, 0, 4, 9, 29, 0, 13, 0, 4, 34, 4, 0, 13, 0, 29, 9, 4, 0, 13, 25, 4, 9, 4, 0, 38, 0, 4, 9, 4, 25, 13, 0, 4, 9, 29, 0, 13, 0, 4, 34, 4, 0, 13, 0, 29, 9, 4, 0, 13, 25, 4, 9, 4, 0, 38, 0, 4, 9, 4, 25, 13, 0, 4, 9, 29, 0, 13, 0, 4, 34, 4, 0, 13, 0
Offset: 1
A228182 a(n) is the smallest k such that the sum of squares of prime divisors of k is equal to the sum of prime divisors of n+k.
12, 810, 35152, 18, 9, 67881, 6, 36, 20, 12, 3, 7203, 14688, 162, 350, 6, 81, 75, 9, 24, 25, 3648, 37905, 2125, 3, 18, 455, 225, 27, 3800, 81, 12, 343, 54, 26730, 1540, 180, 6, 14, 48, 5, 10010, 96348, 798, 49, 360, 9, 45, 3430, 192, 126, 36, 3, 225, 729, 648
Offset: 1
Keywords
Comments
Examples
a(2) = 810 because the prime divisors of 810 are {2, 3, 5}, the prime divisors of 810 + 2 = 812 are {2, 7, 29} and 2^2 + 3^2 + 5^2 = 2 + 7 + 29 = 38, hence 810 is in the sequence.
Programs
-
Mathematica
sk[n_]:=Module[{k=1},While[Plus@@(First@#&/@FactorInteger[k]^2)!=Plus@@(First@#&/@FactorInteger[n+k]),k++];k];Array[sk,65,1]
A280385 a(n) = Sum_{k=1..n} prime(k)^2*floor(n/prime(k)) .
0, 4, 13, 17, 42, 55, 104, 108, 117, 146, 267, 280, 449, 502, 536, 540, 829, 842, 1203, 1232, 1290, 1415, 1944, 1957, 1982, 2155, 2164, 2217, 3058, 3096, 4057, 4061, 4191, 4484, 4558, 4571, 5940, 6305, 6483, 6512, 8193, 8255, 10104, 10229, 10263, 10796, 13005, 13018, 13067, 13096, 13394, 13567, 16376, 16389, 16535
Offset: 1
Comments
Sum of all squares of prime divisors of all positive integers <= n.
Partial sums of A005063.
Examples
For n = 6 the prime divisors of the first six positive integers are {0}, {2}, {3}, {2}, {5}, {2, 3} so a(6) = 0^2 + 2^2 + 3^2 + 2^2 + 5^2 + 2^2 + 3^2 = 55.
Programs
-
Mathematica
Table[Sum[Prime[k]^2 Floor[n/Prime[k]], {k, 1, n}], {n, 55}] Table[Sum[DivisorSum[k, #1^2 &, PrimeQ[#1] &], {k, 1, n}], {n, 55}] nmax = 55; Rest[CoefficientList[Series[(1/(1 - x)) Sum[Prime[k]^2 x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]]
-
PARI
a(n) = sum(k=1, n, prime(k)^2 * (n\prime(k))); \\ Indranil Ghosh, Apr 03 2017
-
Python
from sympy import prime print([sum([prime(k)**2 * (n//prime(k)) for k in range(1, n + 1)]) for n in range(1, 21)]) # Indranil Ghosh, Apr 03 2017
Formula
G.f.: (1/(1 - x))*Sum_{k>=1} prime(k)^2*x^prime(k)/(1 - x^prime(k)).
A300521 Expansion of Product_{k>=1} (1 - x^prime(k))^prime(k).
1, 0, -2, -3, 1, 1, 3, 0, 9, 8, 4, -31, -12, -13, 20, -13, 48, -17, 74, -87, 8, -143, 175, -174, 349, -164, 369, -651, 520, -1004, 1142, -1218, 1652, -1739, 3291, -3933, 3546, -5743, 6170, -8022, 11435, -13230, 17196, -18706, 22958, -31884, 38420, -49802, 58916
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
nmax = 48; CoefficientList[Series[Product[(1 - x^Prime[k])^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x] nmax = 48; CoefficientList[Series[Exp[-Sum[DivisorSum[k, Boole[PrimeQ[#]] #^2 &] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
A372620 Expansion of Sum_{k>=1} k * prime(k) * x^prime(k) / (1 - x^prime(k)).
0, 2, 6, 2, 15, 8, 28, 2, 6, 17, 55, 8, 78, 30, 21, 2, 119, 8, 152, 17, 34, 57, 207, 8, 15, 80, 6, 30, 290, 23, 341, 2, 61, 121, 43, 8, 444, 154, 84, 17, 533, 36, 602, 57, 21, 209, 705, 8, 28, 17, 125, 80, 848, 8, 70, 30, 158, 292, 1003, 23, 1098, 343, 34, 2, 93
Offset: 1
Keywords
Examples
a(60) = a(2^2 * 3 * 5) = a(prime(1)^2 * prime(2) * prime(3)) = 1 * 2 + 2 * 3 + 3 * 5 = 23.
Programs
-
Mathematica
nmax = 65; CoefficientList[Series[Sum[k Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest a[n_] := Plus @@ (PrimePi[#[[1]]] #[[1]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 65}]
Formula
L.g.f.: -log( Product_{k>=1} (1 - x^prime(k))^k ).
If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j) * p_j), where pi = A000720.
Comments
Links
Crossrefs
Formula