cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A209233 A two-digit Look-and-Say sequence starting with 11: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

11, 111, 211, 111121, 311112121, 311212221131, 211212113221222231, 211312113421422123131132, 311212413114421122123331132134242, 411412313114421122123224331132233134141342144, 411312413414321322323124431232233234441242143244
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Comments

a(16) is the first term containing a zero; this is due to the fact that a(15) is the first term having exactly 10 occurrences of a two-digit number, namely 10 x 31.

Examples

			a(0) = 11: 1 x 11 --> a(1) = 111;
a(1) = 111: 2 x 11 --> a(2) = 211;
a(2) = 211: 1 x 11 and 1 x 21 --> a(3) = 111121;
a(3) = 111121: 3 x 11, 1 x 12 and 1 x 21 --> a(4) = 311112121.
		

Crossrefs

Cf. A209234 (start=10), A221368 (start=12), A221369 (start=13), A221372 (start=19), A221373 (start=99).

Programs

  • Haskell
    -- See Link.

A209234 A two-digit Look-and-Say sequence starting with 10: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

10, 110, 110111, 101110311, 101103210311131, 101203310311113121231132, 101203210411312213120121123431132133, 201103104210311512413220421122123331232133134141143, 101203204310411412313214115220421222223124431232333134341242143151
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Examples

			a(0) = 10: 1x10 --> a(1)=110;
a(1) = 110: 1x10 and 1x11 --> a(2)=110111;
a(2) = 110111: 1x01, 1x10 and 3x11 -> a(3)=101110311;
a(3) = 101110311: 1x01, 1x03, 2x10, 3x11 and 1x31 -> a(4)=101103210311131.
		

Crossrefs

Cf. A209233 (start=11), A221368 (start=12), A221369 (start=13), A221372 (start=19), A221373 (start=99).

Programs

  • Haskell
    -- See Link.

A221368 A two-digit Look-and-Say sequence starting with 12: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

12, 112, 111112, 411112, 311112141, 311112114121131141, 611212113214221231241, 211412113114421122123124131132141142161, 611412313414116621122123124331132341242144161, 411512213314216321122323224331132133234541142143144261162166
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Comments

a(36) is the first term containing a zero; this is due to the fact that a(35) is the first term having exactly 10 occurrences of a two-digit number, namely 10 x 42.

Examples

			a(0) = 12: 1 x 12 --> a(1) = 112;
a(1) = 112: 1 x 11 ana 1 x 12 --> a(2) = 111112;
a(2) = 111112: 4 x 11 and 1 x 12 --> a(4) = 411112;
a(3) = 411112: 3 x 11, 1 x 12 and 1 x 41 --> a(4) = 311112141.
		

Crossrefs

Cf. A209234 (start=10), A209233 (start=11), A221369 (start=13), A221372 (start=19), A221373 (start=99).

Programs

  • Haskell
    -- See Link.

A221372 A two-digit Look-and-Say sequence starting with 19: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

19, 119, 111119, 411119, 311119141, 311114119131141191, 611113214219231241291, 311212113114119221123124129131132141142161191192, 911512313314116319521122123124129431132341142161291292
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Comments

a(16) is the first term containing a zero; this is due to the fact that a(15) is the first term having exactly 10 occurrences of a two-digit number, namely 10 x 51.

Examples

			a(0) = 19: 1 x 19 --> a(1) = 119;
a(1) = 119: 1 x 11 and 1 x 19 --> a(2) = 111119;
a(2) = 111119: 4 x 11 and 1 x 19 --> a(3) = 411119;
a(3) = 411119: 3 x 11, 1 x 19 and 1 x 41 --> a(4) = 311119141.
		

Crossrefs

Cf. A209234 (start=10), A209233 (start=11), A221368 (start=12), A221369 (start=13), A221373 (start=99).

Programs

  • Haskell
    -- See Link.

A221373 A two-digit Look-and-Say sequence starting with 99: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

99, 199, 119199, 111219191199, 311112319121291199, 411312219121123129231291199, 311512113219221122223229331141291192199, 511312113114115319421522123229231232133141151191292193199, 611412313214315419521222323229631232133241142251152153191292193194199
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Comments

a(22) is the first term containing a zero; this is due to the fact that a(21) is the first term having exactly 10 occurrences of a two-digit number, namely 10 x 32.

Examples

			a(0) = 11: 1x99 --> a(1)=199;
a(1) = 199: 1x19 and 1x99 --> a(2)=119199;
a(2) = 119199: 1x11, 2x19, 1x91 and 1x99 --> a(3)=111219191199;
a(3) = 111219191199: 3x11, 1x12, 3x19, 1x21, 2x91 and 1x99 --> a(4)=311112319121291199.
		

Crossrefs

Cf. A209234 (start=10), A209233 (start=11), A221368 (start=12), A221369 (start=13), A221372 (start=19).

Programs

  • Haskell
    -- See Link.

A112512 Say what you see in previous term, same as A063850, but starting with 2.

Original entry on oeis.org

2, 12, 1112, 3112, 132112, 311322, 232122, 421311, 14123113, 41141223, 24312213, 32142321, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114
Offset: 1

Views

Author

Michele Dondi (blazar(AT)lcm.mi.infn.it), Sep 09 2005

Keywords

Comments

Eventually periodic, eventually identical (to a shift of) A063850.

Crossrefs

Programs

A010861 Constant sequence: a(n) = 22.

Original entry on oeis.org

22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22
Offset: 0

Views

Author

Keywords

Comments

Describe the previous term! (method A - initial term is 22).

Crossrefs

Formula

G.f.: 22/(1-x); e.g.f.: 22*exp(x). - Vincenzo Librandi, Jan 20 2012

A047843 Describe n: give frequency of each digit, by increasing size; mention also missing digits between the smallest and largest one.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1011, 21, 1112, 110213, 11020314, 1102030415, 110203040516, 11020304050617, 1102030405060718, 110203040506070819, 100112, 1112, 22, 1213, 120314, 12030415, 1203040516
Offset: 0

Views

Author

Keywords

Comments

Other methods to describe or summarize n are: A047842 (as here, but ignoring "missing" digits), A244112 (count digits in order of decreasing size, ignoring missing digits). - M. F. Hasler, Feb 25 2018

Examples

			131 contains two 1's, zero 2's and one 3, so a(131) = 210213.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{T, f}, T = Tally[IntegerDigits[n]]; f[_] = 0; Do[f[t[[1]]] = t[[2]], {t, T}]; Table[{f[k], k}, {k, Min@T[[All, 1]], Max@T[[All, 1]]} ] // Flatten // FromDigits];
    a /@ Range[0, 26] (* Jean-François Alcover, Jan 07 2020 *)
  • PARI
    A047843(n,S="")={if(n,for(d=vecmin(n=digits(n)),vecmax(n),S=Str(S,#select(t->t==d,n),d));eval(S),10)} \\ M. F. Hasler, Feb 25 2018

Extensions

More accurate title from M. F. Hasler, Feb 25 2018

A083671 Array read by rows in which each row describes in words the composition of the previous row.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 2, 1, 3, 3, 1, 2, 2, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 4, 2, 1, 3, 3, 1, 1, 2, 1, 3, 1, 4, 4, 1, 1, 2, 2, 3, 1, 4, 3, 1, 2, 2, 1, 3, 2, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4, 2, 1, 3, 2, 2, 3, 1, 4
Offset: 1

Views

Author

N. J. A. Sloane, based on a query from Chasity Engle, Jan 20 2004

Keywords

Comments

Becomes periodic at row 13.

Examples

			Array begins:
1
1 1
2 1
1 1 1 2
3 1 1 2
2 1 1 2 1 3
3 1 2 2 1 3
2 1 2 2 2 3
1 1 4 2 1 3
3 1 1 2 1 3 1 4
4 1 1 2 2 3 1 4
3 1 2 2 1 3 2 4
2 1 3 2 2 3 1 4
Explanation: look at 3 1 1 2. What do you see? Two 1's, one 2 and one 3, so the next row is 2 1 1 2 1 3.
		

Crossrefs

Similar to A005151. Cf. A005150, A034002, A034003.

Programs

  • Mathematica
    NestList[Function[test, Flatten[{Count[test, # ], # } & /@ Union[test]]], {1}, 13]
    RunLengthEncode[x_List ] := (Through[ { Length, First}[ #1 ] ] &) /@ Split[ Sort[ x ]]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[n_] := LookAndSay[ n, 1 ][[ n ]]; Flatten[ Table[ F[n], {n, 18}]] (* Robert G. Wilson v, Jan 22 2004 *)

Formula

G.f.: x*(x^67 -x^65 -x^63 +x^61 -x^59 +x^57 -x^55 +x^53 -x^49 -x^45 -x^44 -x^42 +3*x^41 -x^40 +2*x^38 -x^37 -x^36 +x^35 -x^34 -2*x^33 +2*x^32 -x^30 -x^28 +x^27 +2*x^26 -x^25 -x^24 -x^22 +x^20 -2*x^19 -2*x^18 +2*x^17 -x^13 -x^12 +x^11 -2*x^9 -x^8 -x^7 -x^6 -x^5 -x^4 -2*x^3 -x^2 -x -1) / (x^8-1). - Alois P. Heinz, Jul 25 2013

Extensions

More terms from Wouter Meeussen and Robert G. Wilson v, Jan 22 2004

A112515 Say what you see in previous term, same as A063850 but starting with 5.

Original entry on oeis.org

5, 15, 1115, 3115, 132115, 31131215, 23411215, 2213143115, 2241231415, 3224311315, 3322143115, 3322311415, 3322311415, 3322311415, 3322311415, 3322311415, 3322311415
Offset: 1

Views

Author

Michele Dondi (blazar(AT)lcm.mi.infn.it), Sep 09 2005

Keywords

Crossrefs

Programs

Previous Showing 11-20 of 44 results. Next