cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 246 results. Next

A239913 a(n) = n - Q(n), where Q(n) is Hofstadter's Q-sequence A005185.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 4, 5, 6, 5, 7, 7, 7, 8, 8, 9, 10, 11, 8, 11, 12, 11, 12, 13, 14, 11, 15, 16, 14, 14, 17, 17, 16, 18, 18, 18, 19, 19, 20, 21, 22, 23, 16, 25, 25, 21, 24, 27, 24, 25, 28, 25, 28, 27, 28, 29, 30, 23, 31, 34, 28, 32, 35, 30, 30, 34, 34, 33, 35
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2014

Keywords

Comments

Just as for A005185, it is not known if this sequence exists for all n.

Crossrefs

Cf. A005185.

Programs

Formula

For n >= 3, a(n) = a(a(n-1)+1) + a(a(n-2)+2) - a(n-1) - a(n-2) + n - 3. - Chai Wah Wu, Apr 13 2023

A280706 a(n) = Sum_{k=1..n} q(k+1-q(k)), where q(k) = A005185(k); partial sums of A283467.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 23, 26, 30, 35, 39, 44, 49, 54, 60, 66, 72, 78, 86, 92, 100, 108, 116, 124, 132, 142, 150, 159, 169, 179, 189, 200, 211, 221, 232, 243, 254, 266, 278, 290, 302, 314, 330, 340, 354, 368, 380, 394, 410, 424, 438, 454, 468, 484, 500, 516, 532, 552, 568, 585, 606, 622, 639, 658, 678, 698, 719, 740
Offset: 1

Views

Author

Antti Karttunen after Altug Alkan's A284173, Mar 22 2017

Keywords

Crossrefs

Partial sums of A283467.

Programs

  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - a[n - 2]]; Accumulate@ Table[a[n + 1 - a[n]], {n, 72}] (* Michael De Vlieger, Mar 22 2017 *)
  • PARI
    a(n) = if(n<3, 1, a(n - a(n - 1)) + a(n - a(n - 2)));
    for(n=1, 72, print1(sum(k=1, n, a(k + 1 - a(k))),", ")) \\ Indranil Ghosh, Mar 22 2017
  • Scheme
    ;; Code for A005185 given under that entry.
    ;; With memoization-macro definec:
    (definec (A280706 n) (if (= 1 n) 1 (+ (A280706 (- n 1)) (A283467 n))))
    ;; As an explicit sum (slower):
    (define (A280706 n) (add (lambda (k) (A005185 (- (+ k 1) (A005185 k)))) 1 n))
    ;; Implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
    

Formula

a(1) = 1, for > 1, a(n) = A283467(n) + a(n-1).
A284173(n) = a(n) modulo n.

A283673 a(n) = lcm(q(n - q(n+1) + 2), q(n - q(n) + 2)) where q(n) = A005185(n).

Original entry on oeis.org

1, 2, 2, 2, 6, 6, 3, 3, 3, 4, 15, 4, 5, 20, 5, 30, 30, 6, 6, 6, 6, 8, 24, 24, 8, 8, 8, 8, 10, 72, 72, 10, 110, 90, 99, 11, 110, 11, 132, 132, 12, 12, 12, 12, 12, 16, 70, 154, 112, 48, 84, 112, 112, 14, 16, 112, 16, 16, 16, 16, 20, 272, 238, 357, 304, 272, 380, 20, 340, 357, 399
Offset: 1

Views

Author

Altug Alkan, Mar 14 2017

Keywords

Comments

See the order of chaotic subsequences in scatterplot link.

Examples

			a(4) = lcm(A005185(4 - A005185(5) + 2), A005185(4 - A005185(4) + 2)) = lcm(A005185(3), A005185(3)) = lcm(2, 2) = 2.
		

Crossrefs

Programs

  • Mathematica
    q[1] = q[2] = 1; q[n_] := q[n] = q[n - q[n - 1]] + q[n - q[n - 2]]; Table[LCM[q[n - q[n + 1] + 2], q[n - q[n] + 2]], {n, 71}] (* Indranil Ghosh, Mar 14 2017 *)
  • PARI
    a=vector(1001); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); va = vector(1000, n, lcm(a[n+2-a[n+1]],a[n+2-a[n]]))

A284173 a(n) = (Sum_{k=1..n} q(k+1-q(k))) mod n where q(k) = A005185(k).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 5, 7, 9, 1, 2, 4, 7, 9, 12, 15, 0, 3, 6, 9, 12, 17, 20, 0, 4, 8, 12, 16, 22, 26, 31, 4, 9, 14, 20, 26, 31, 37, 3, 8, 14, 20, 26, 32, 38, 1, 4, 11, 18, 23, 30, 39, 46, 53, 6, 12, 20, 28, 36, 44, 56, 1, 9, 21, 28, 36, 46, 57, 68, 9, 20, 30, 39, 48, 60, 69, 2, 12
Offset: 1

Views

Author

Altug Alkan, Mar 21 2017

Keywords

Comments

Sequence represents d(n, 1, 1) where d(n, i, j) = (Sum_{k=1..n} q(k+j-q(k))) mod (n*i) where q(k) = A005185(k).

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    B[1]:= 1:
    B[2]:= 1:
    for n from 3 to N do
      B[n]:= B[n-B[n-1]] + B[n-B[n-2]];
    od:
    seq(add(B[k+1-B[k]], k=1..n) mod n, n=1..N); # Robert Israel, Mar 22 2017
  • Mathematica
    q[n_]:=If[n<3, 1, q[n - q[n - 1]] + q[n - q[n - 2]]]; a[n_]:=Mod[Sum[q[k + 1 - q[k]],{k, n}], n]; Table[a[n], {n, 100}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); vector(#a, n, sum(k=1, n, a[k+1-a[k]]) % n)
    
  • Scheme
    (define (A284173 n) (modulo (A280706 n) n)) ;; Other code as in A280706, A283467 and A005185 - Antti Karttunen, Mar 22 2017

Formula

a(n) = A280706(n) mod n. - Antti Karttunen, Mar 22 2017

A108583 Primes of the form 1 + Product_{j=1..k} b(j), where b(n) = b(n-1) + 2*A005185(n) and b(1) = 2.

Original entry on oeis.org

3, 13, 2593, 2426113
Offset: 0

Views

Author

Roger L. Bagula, Jul 05 2005

Keywords

Comments

Next term contains 886 digits. - G. C. Greubel, Dec 19 2022

Crossrefs

Programs

  • Mathematica
    Hofstadter[n_]:= Hofstadter[n]= If[n<2, 1, Hofstadter[n-Hofstadter[n- 1]] +Hofstadter[n-Hofstadter[n-2]]]; (* A005185 *)
    b[n_]:= b[n]= If[n==1, 2, b[n-1] +2*Hofstadter[n]]; (* A108585 *)
    p[n_]:= p[n]= Product[b[j], {j,n}];
    Select[Table[p[n] +1, {n, 500}], PrimeQ]

Extensions

Edited by G. C. Greubel, Dec 19 2022

A108585 a(n) = a(n-1) + 2*A005185(n+1), with a(1) = 2.

Original entry on oeis.org

2, 6, 12, 18, 26, 36, 46, 58, 70, 82, 98, 114, 130, 150, 168, 188, 210, 232, 256, 280, 304, 328, 360, 388, 416, 448, 480, 512, 544, 584, 618, 652, 692, 734, 772, 812, 856, 898, 942, 988, 1034, 1082, 1130, 1178, 1226, 1274, 1338, 1386, 1436, 1496, 1552, 1604
Offset: 1

Views

Author

Roger L. Bagula, Jul 05 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Hofstadter[n_]:= Hofstadter[n]= If[n<3, 1, Hofstadter[n-Hofstadter[n- 1]] + Hofstadter[n-Hofstadter[n-2]]];
    a[n_]:= a[n]= If[n==1, 2, a[n-1] +2*Hofstadter[n+1]];
    Table[a[n], {n,60}]
  • SageMath
    @CachedFunction
    def H(n): return 1 if (n<3) else H(n-H(n-1)) + H(n-H(n-2))
    def a(n): return 2 if (n==1) else a(n-1) + 2*H(n+1)
    [a(n) for n in range(1,61)] # G. C. Greubel, Dec 19 2022

A169637 The number of permutations of the first n elements of the Hofstaedter Q-sequence (A005185), augmented by Q(0)=1.

Original entry on oeis.org

1, 1, 1, 4, 20, 60, 420, 3360, 15120, 151200, 831600, 3326400, 43243200, 302702400, 1513512000, 24216192000, 411675264000, 3705077376000, 70396470144000, 703964701440000, 14783258730240000, 162615846032640000, 1246721486250240000, 7480328917501440000
Offset: 0

Views

Author

Roger L. Bagula, Apr 04 2010

Keywords

Comments

An augmented Hofstadter sequence 1,1,1,2,3,3,... is defined by adding a single 1 in front of A005185. a(n) is the number of permutations using the first n+1 elements, 1 up to A005185(n), of this augmented sequence.

Examples

			For n=3, the first 4 elements of the augmented sequence are (1,1,1,2), with a(3)=4 permutations, namely (1,1,1,2), (1,1,2,1), (1,2,1,1) and (2,1,1,1).
		

Crossrefs

Cf. A005185.

Programs

  • Mathematica
    f[0] = 1; f[1] = 1; f[2] = 1;
    f[n_] := f[n] = f[n - f[n - 1]] + f[n - f[n - 2]];
    a[m_] := Length[Permutations[Table[f[i], {i, 0, m}]]];
    (* b = Table[a[m], {m, 0, 10}]  *)
    (* A much better way to compute the terms is to use the multinomials of the multiplicities of the terms of A005229! - Joerg Arndt, Dec 23 2014 *)
  • PARI
    See Links section.

Extensions

Definition clarified, comment and example added - R. J. Mathar, Dec 08 2010
More terms from Rémy Sigrist, Jun 29 2021

A283672 a(n) = gcd(q(n - q(n+1) + 2), q(n - q(n) + 2)) where q(n) = A005185(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 3, 4, 1, 4, 5, 1, 5, 1, 1, 6, 6, 6, 6, 8, 2, 2, 8, 8, 8, 8, 10, 1, 1, 10, 1, 1, 1, 11, 1, 11, 1, 1, 12, 12, 12, 12, 12, 16, 2, 1, 2, 4, 2, 2, 2, 14, 16, 2, 16, 16, 16, 16, 20, 1, 1, 1, 1, 1, 1, 20, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 22, 1, 1, 23, 1, 1, 1, 1, 23, 24
Offset: 1

Views

Author

Altug Alkan, Mar 14 2017

Keywords

Examples

			a(4) = gcd(A005185(4 - A005185(5) + 2), A005185(4 - A005185(4) + 2)) = gcd(A005185(3), A005185(3)) = gcd(2, 2) = 2.
		

Crossrefs

Programs

  • Mathematica
    q[1] = q[2] = 1; q[n_] := q[n] = q[n - q[n - 1]] + q[n - q[n - 2]]; Table[GCD[q[n - q[n + 1] + 2], q[n - q[n] + 2]], {n, 88}] (* Indranil Ghosh, Mar 14 2017 *)
  • PARI
    a=vector(1001); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); va = vector(1000, n, gcd(a[n+2-a[n+1]], a[n+2-a[n]]))

A302779 Restricted growth sequence transform of ordered pair [Q(n-Q(n-1)), Q(n-Q(n-2))], the left & right summand of Hofstadter Q-sequence A005185.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 9, 10, 9, 11, 11, 12, 12, 12, 12, 13, 14, 15, 13, 13, 13, 13, 16, 17, 18, 16, 19, 20, 21, 22, 19, 22, 23, 23, 24, 24, 24, 24, 24, 25, 26, 27, 28, 29, 30, 31, 28, 32, 25, 28, 25, 25, 25, 25, 33, 34, 35, 36, 37, 38, 39, 33, 40, 36, 41, 42, 43, 39, 44, 43, 45, 46, 47, 48, 48, 49, 50, 51, 52, 52, 49, 53, 53, 53, 53, 53, 53
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2018

Keywords

Comments

Restricted growth sequence transform of A286559.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    first_n_of_A005185(n) = { my(v=vector(n)); v[1]=v[2]=1; for(k=3, n, v[k]=v[k-v[k-1]]+v[k-v[k-2]]); (v); };
    v005185 = first_n_of_A005185(up_to);
    A005185(n) = v005185[n];
    Aux302779(n) = if(n<3,0,[A005185(n-A005185(n-1)), A005185(n-A005185(n-2))]);
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux302779(n))),"b302779.txt");

A302780 Restricted growth sequence transform of 4-tuple [H(H(n-1)), H(n-H(n-1)), Q(n-Q(n-1)), Q(n-Q(n-2))] where H = A004001 and Q = A005185.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 47, 50, 50, 50, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 79, 80, 80
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2018

Keywords

Comments

Restricted growth sequence transform of A286560: a filter sequence which includes both the summands of A004001 and the summands of A005185.
For all i, j: a(i) = a(j) => b(i) = b(j), where b is a sequence like A087740, A284019, A286569 or A302779.
For n > 1000 the duplicates get rare. In range [1000, 65536] there are only three cases: a(1353) = a(1354) = 1319, a(39361) = a(39362) = 39326, and a(46695) = a(46696) = 46659.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    first_n_of_A004001(n) = { my(v=vector(n)); v[1]=v[2]=1; for(k=3, n, v[k]=v[v[k-1]]+v[k-v[k-1]]); (v); }; \\ Charles R Greathouse IV, Feb 26 2017
    v004001 = first_n_of_A004001(up_to);
    A004001(n) = v004001[n];
    first_n_of_A005185(n) = { my(v=vector(n)); v[1]=v[2]=1; for(k=3, n, v[k]=v[k-v[k-1]]+v[k-v[k-2]]); (v); }; \\
    v005185 = first_n_of_A005185(up_to);
    A005185(n) = v005185[n];
    Aux302780(n) = if(n<3,0,[A004001(A004001(n-1)), A004001(n-A004001(n-1)), A005185(n-A005185(n-1)), A005185(n-A005185(n-2))]);
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux302780(n))),"b302780.txt");
Previous Showing 11-20 of 246 results. Next