cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A301741 a(n) = n! * [x^n] exp((n + 1)*x + x^2/2).

Original entry on oeis.org

1, 2, 10, 76, 778, 10026, 155884, 2839880, 59339004, 1399069450, 36746349496, 1064024248068, 33676500286840, 1156685567791586, 42850609041047760, 1703182952266379536, 72299420602524921616, 3264579136056004359570, 156238968782480840396704, 7900247992586138688381500
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 26 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..10],n->Sum([0..Int(n/2)],k->Factorial(n)*(n+1)^(n-2*k)/(2^k*Factorial(k)*Factorial(n-2*k)))); # Muniru A Asiru, Mar 26 2018
  • Mathematica
    Table[n! SeriesCoefficient[Exp[(n + 1) x + x^2/2], {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[1/(1 - (n + 1) x + ContinuedFractionK[-k x^2, 1 - (n + 1) x, {k, 1, n}]), {x, 0, n}], {n, 0, 19}]
    Table[Sum[n! (n + 1)^(n - 2 k)/(2^k k! (n - 2 k)!), {k, 0, Floor[n/2]}], {n, 0, 19}]

Formula

a(n) = [x^n] 1/(1 - (n + 1)*x - x^2/(1 - (n + 1)*x - 2*x^2/(1 - (n + 1)*x - 3*x^2/(1 - ...)))), a continued fraction.
a(n) = Sum_{k=0..floor(n/2)} n!*(n + 1)^(n-2*k)/(2^k*k!*(n - 2*k)!).
a(n) ~ exp(3/2) * n^n. - Vaclav Kotesovec, Apr 08 2018

A336027 The least k such that i*k + 1 is a product of i different primes for i = 1..n.

Original entry on oeis.org

1, 10, 268, 7576, 652726, 913180816
Offset: 1

Views

Author

Vladimir Letsko, Jul 05 2020

Keywords

Comments

Since for k = 5000000000420503488, i*k+1 is a product of i different primes for i = 1..7, a(7) <= 5000000000420503488.
a(n) is the least parameter k such that equation tau(x^k) = x has at least A005425(n) solutions in positive integers.

Examples

			268 is in the sequence because 268 + 1 is prime, 2*268 + 1 is a product of 2 different primes, 3*268 + 1 is a product of 3 different primes, and 268 is the least number with such properties.
		

Crossrefs

Programs

  • Maple
    nn := 1; for kk to 6 do
    n := nn; do n := nextprime(n); f := true;
    for k from 2 to kk do a := k*(n-1)+1; if not IsSquareFree(a) or nops(ifactors(a)[2]) <> k then f := false; break end if end do;
    if f then nn := n-1; print(nn); break end if end do end do
  • PARI
    isok(k,n) = {for (i=1, n, if ((omega(i*k+1) != i) || (bigomega(i*k+1) != i), return (0));); return (1);}
    a(n) = {my(k=1); while(!isok(k,n), k++); k;} \\ Michel Marcus, Jul 15 2020

A086363 Array T(m,n) read by antidiagonals: if X and Y are two (possibly empty) finite sets with m and n elements respectively and Z is the disjoint union of X and Y, then T(m,n) is the number of self-inverse partial functions f:Z ->Z which do not fix any element of Y.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 4, 6, 9, 14, 10, 14, 20, 29, 43, 26, 36, 50, 70, 99, 142, 76, 102, 138, 188, 258, 357, 499, 232, 308, 410, 548, 736, 994, 1351, 1850, 764, 996, 1304, 1714, 2262, 2998, 3992, 5343, 7193
Offset: 0

Views

Author

James East, Sep 04 2003

Keywords

Examples

			T(1,2)=6: If we let X={1}, Y={2,3}, so Z={1,2,3} and the relevant partial functions f:Z ->Z which do not fix either 2 or 3 are (-,-,-), (1,-,-), (-,3,2), (1,3,2), (2,1,-), (3,-,1). Here a partial function f:Z ->Z is displayed as (f(1),f(2),f(3)).
Array begins:
   1,  1,  2,   4,  10,   26,   76,   232,   764, ...
   2,  3,  6,  14,  36,  102,  308,   996,  3384, ...
   5,  9, 20,  50, 138,  410, 1304,  4380, 15500, ...
  14, 29, 70, 188, 548, 1714, 5684, 19880, 72808, ...
		

Programs

  • PARI
    T(m, n)={ if(m, if(n>1, T(m, n-1)+m*T(m-1, n-1)+(n-1)*T(m, n-2), A005425(m)+if(n,A005425(m-1)*m)),A000085(n))} \\ M. F. Hasler, Jan 13 2012
    for(i=1,9,for(j=1,i,print1(T(j-1,i-j)","))) /* list values by antidiagonals */

Formula

T(m, n) = T(m, n-1) + m*T(m-1, n-1) + (n-1)*T(m, n-2) for m>0, n>1; T(m, 0) = b(m); T(m, 1) = b(m) + m*b(m-1); T(0, n) = c(n); where sequences b and c are A005425 and A000085 respectively.

Extensions

Corrected and extended by Philippe Deléham, Dec 31 2011
Values double-checked using the given PARI/GP code by M. F. Hasler, Jan 13 2012
Previous Showing 31-33 of 33 results.