cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A229660 10-section a(10n+k) gives k-th differences of a for k=0..9 with a(n)=0 for n<9 and a(9)=1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -9, 0, 0, 0, 0, 0, 0, 0, 1, -8, 36, 0, 0, 0, 0, 0, 0, 1, -7, 28, -84, 0, 0, 0, 0, 0, 1, -6, 21, -56, 126, 0, 0, 0, 0, 1, -5, 15, -35, 70, -126, 0, 0, 0, 1, -4, 10, -20, 35, -56, 84, 0, 0, 1, -3, 6, -10
Offset: 0

Views

Author

Alois P. Heinz, Sep 27 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local m, q;
          m:= irem(n, 10, 'q'); `if`(n<10, `if`(n=9, 1, 0),
          add(a(q+m-j)*(-1)^j*binomial(m, j), j=0..m))
        end:
    seq(a(n), n=0..100);

Formula

a(10*n+k) = Sum_{j=0..k} (-1)^j * C(k,j) * a(n+k-j) for k=0..9.

A309048 Expansion of Product_{k>=0} (1 + x^(3^k) + x^(2*3^k) - x^(3^(k+1))).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, -1, 0, 0, 1, 1, 1, 0, 1, 1, -1, 0, 0, 1, 1, 1, 0, 1, 1, -2, -1, -1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, -1, 0, 0, 1, 1, 1, 0, 1, 1, -2, -1, -1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, -1, 0, 0, 1, 1, 1, 0, 1, 1, -3, -2, -2, 1, -1, -1, 0, -1, -1, 2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 109; CoefficientList[Series[Product[(1 + x^(3^k) + x^(2 3^k) - x^(3^(k + 1))), {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x]
    nmax = 109; A[] = 1; Do[A[x] = (1 + x + x^2 - x^3) A[x^3] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := Switch[Mod[n, 3], 0, a[n/3] - a[(n - 3)/3], 1, a[(n - 1)/3], 2, a[(n - 2)/3]]; Table[a[n], {n, 0, 109}]

Formula

G.f. A(x) satisfies: A(x) = (1 + x + x^2 - x^3) * A(x^3).
a(0) = 1; a(3*n) = a(n) - a(n-1), a(3*n+1) = a(n), a(3*n+2) = a(n).

A309020 Expansion of x * Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1)) - x^(2^(k+2))).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 2, 1, 1, 0, 1, 2, 2, 4, 3, 3, 2, 1, 2, 2, 2, 1, 1, 0, 1, 0, 0, 0, 1, 3, 2, 3, 2, 4, 4, 5, 3, 2, 3, 2, 2, 0, 1, 1, 2, 3, 2, 2, 2, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 0, 1, 1, 4, 3, 4, 2, 2, 3, 3, 2, 3, 4, 6, 4, 5, 5, 4, 3, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[x Product[(1 + x^(2^k) + x^(2^(k + 1)) - x^(2^(k + 2))), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], a[n/2], a[(n - 1)/2] + a[(n + 1)/2] - a[(n - 3)/2]]; Table[a[n], {n, 0, 90}]

Formula

a(0) = 0, a(1) = 1; a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1) - a(n-1).

A309021 Expansion of x * Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1)) - x^(2^(k+2))).

Original entry on oeis.org

0, 1, 1, 0, 1, -2, 0, 0, 1, -3, -2, 1, 0, 2, 0, 1, 1, -4, -3, 0, -2, 6, 1, 1, 0, 1, 2, -2, 0, -1, 1, 0, 1, -6, -4, 0, -3, 7, 0, 1, -2, 8, 6, -3, 1, -6, 1, -2, 0, 0, 1, 1, 2, -5, -2, 0, 0, 1, -1, 2, 1, 0, 0, 0, 1, -7, -6, 1, -4, 10, 0, 1, -3, 10, 7, -4, 0, -6, 1, -3, -2, 9, 8, 0, 6, -17, -3, -2, 1, -4, -6
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[x Product[(1 + x^(2^k) - x^(2^(k + 1)) - x^(2^(k + 2))), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], a[n/2], a[(n + 1)/2] - a[(n - 1)/2] - a[(n - 3)/2]]; Table[a[n], {n, 0, 90}]

Formula

a(0) = 0, a(1) = 1; a(2*n) = a(n), a(2*n+1) = a(n+1) - a(n) - a(n-1).

A277778 If n is even, a(n) = a(n/2-1), and if n is odd, a(n) = a((n-1)/2) - a((n+1)/2), with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, -1, 0, 0, 1, 0, 1, 2, 1, -1, -1, 0, 0, -1, 0, 1, 1, -1, 0, -1, 1, 1, 2, 2, 1, 0, -1, -1, -1, 0, 0, 1, 0, -1, -1, -1, 0, 0, 1, 2, 1, -1, -1, 1, 0, -2, -1, 0, 1, -1, 1, 0, 2, 1, 2, 1, 1, 1, 0, 0, -1, 0, -1, -1, -1, 0, 0, -1, 0, 1, 1, 1, 0, 0
Offset: 1

Views

Author

Tristan Cam, Oct 30 2016

Keywords

Comments

This sequence grows very slowly, in both positive and negative directions. The first 3 in the list is a(221), the first 12 is a(122333), and the first -13 is a(980851).
First occurrences: a(1) = 1, a(3) = 0, a(7) = -1, a(13) = 2, a(51) = -2, a(221) = 3, a(477) = 4, a(845) = -3, a(1907) = -4, a(3549) = 5, a(7389) = 6, a(7645) = 7, a(13533) = -5, a(27101) = -6, a(30579) = -7, a(56797) = 8, a(61157) = 9, a(117981) = 10, a(122333) = 12, a(216541) = -9, a(216805) = -8, a(236509) = 11, a(245213) = 13, a(433629) = -11, a(471923) = -10, a(489331) = -12, a(978533) = 14, a(978661) = 15, a(980851) = -13, a(1818077) = 16, a(1887709) = 17, a(1957341) = 20, a(3464669) = -15, a(3469029) = -14, a(3755485) = -16, a(3775453) = 18, a(3914701) = 19, a(3914717) = 21, a(3915229) = 22, a(3923421) = 23, a(6938077) = -19, a(7511517) = -17, a(7773661) = -18, a(7829363) = -20, a(15658725) = 25, a(15658867) = -21, a(15660915) = -22, a(15693683) = -23, a(28949981) = 24, a(29089245) = 28, a(29220317) = 27, a(30199005) = 26, a(30203357) = 29, a(31313117) = 30, a(31317469) = 33. - Charles R Greathouse IV, Oct 30 2016
From Robert Israel, Nov 10 2016: (Start)
a(2^k-2) = 1.
a(2^k-1) = A010892(k).
a(2^k) = A010892(k-1).
a(13*(16^k-1)/15) = A000045(k+2) for k >= 1.
Using this, there is c>0 such that a(n) > c n^d for infinitely many n, where d = log_16((1+sqrt(5))/2) = 0.1735604784...
(End)

Examples

			The first two terms are a(1) = a(2) = 1. To get the next two terms, subtract the second from the first to get a(3) = a(1) - a(2) = 0 and copy the first term as a(4) = a(1) = 1.
To find a(5) and a(6), start over using a(2) and a(3); then for a(7) and a(8), use a(3) and a(4); and so on.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1) .. a(N)
    A[1]:= 1: A[2]:= 1:
    for j from 1 to (N-1)/2 do
      A[2*j+1]:= A[j] - A[j+1];
      A[2*j+2]:= A[j];
    od:
    seq(A[i],i=1..N); # Robert Israel, Nov 10 2016
  • Mathematica
    a[n_] := a[n] = If[ OddQ[n], a[(n - 1)/2] - a[(n + 1)/2], a[n/2 - 1]]; a[1] = a[2] = 1; Array[a, 100] (* Robert G. Wilson v, Nov 11 2016 *)
  • PARI
    a(n)=if(n<7, return(n!=3)); if(n%2, a(n\2) - a(n\2+1), a(n/2-1)) \\ Charles R Greathouse IV, Oct 30 2016

Formula

G.f. satisfies A(x) = (x^2 + x - 1/x) * A(x^2) + 2*x + x^2. - Andrey Zabolotskiy, Oct 30 2016
|a(n)| << n^0.71. - Charles R Greathouse IV, Nov 01 2016

A145865 a(0) = 0, a(1) = 1, a(2n) = a(n), a(2n+1) = a(n) - a(n+1).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 0, -1, 1, 0, 1, 1, 0, 1, -1, -2, 1, 1, 0, -1, 1, 0, 1, 1, 0, -1, 1, 2, -1, 1, -2, -3, 1, 0, 1, 1, 0, 1, -1, -2, 1, 1, 0, -1, 1, 0, 1, 1, 0, 1, -1, -2, 1, -1, 2, 3, -1, -2, 1, 3, -2, 1, -3, -4, 1, 1, 0, -1, 1, 0, 1, 1, 0, -1, 1, 2, -1, 1, -2, -3, 1, 0, 1, 1, 0, 1, -1, -2, 1, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Variation on Stern's Diatomic Series

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = If[EvenQ@ n, a[n/2], a[#] - a[# + 1] &[(n - 1)/2]]; Table[a@ n, {n, 0, 85}] (* Michael De Vlieger, Dec 21 2016 *)

Formula

From Chai Wah Wu, Dec 20 2016: (Start)
a(2^k*n+1) = a(n+1) if k is even
a(2^k*n+1) = a(n)-a(n+1) = a(2n+1) if k is odd
a(2^k*n+2^k-1) = a(n) - k*a(n+1)
a(2^k*n+2^k-3) = a(n+1) for k >= 2
a(2^k*n+2^k-5) = (k-1)*a(n+1)-a(n) for k >= 3
a(2^k*n+2^k-7) = a(n) - (k-2)*a(n+1) for k >= 3
This implies that
a(2^k+1) = 1 if k is even
a(2^k+1) = 0 if k is odd
a(2^k-1) = 2 - k for k >= 1
a(2^k-3) = 1 for k >= 2
a(2^k-5) = k - 3 for k >= 3
a(2^k-7) = 4 - k for k >= 3
(End)

A281048 Expansion of x*(1 - x)*Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1))).

Original entry on oeis.org

1, 0, -1, 1, -2, 1, 1, 0, -3, 1, 2, -1, 1, 0, -1, 1, -4, 1, 3, -2, 3, -1, -2, 1, 1, 0, -1, 1, -2, 1, 1, 0, -5, 1, 4, -3, 5, -2, -3, 1, 4, -1, -3, 2, -3, 1, 2, -1, 1, 0, -1, 1, -2, 1, 1, 0, -3, 1, 2, -1, 1, 0, -1, 1, -6, 1, 5, -4, 7, -3, -4, 1, 7, -2, -5, 3, -4, 1, 3, -2, 5, -1, -4, 3, -5, 2, 3, -1, -4, 1, 3, -2, 3, -1, -2, 1, 1, 0, -1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 27 2017

Keywords

Comments

First differences of A005590.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x (1 - x) Product[1 + x^2^k - x^2^(k + 1), {k, 0, 15}], {x, 0, 100}], x]]
    Differences[a[0] = 0; a[1] = 1; a[n_] := a[n] = If[OddQ[n], a[(n-1)/2 + 1] - a[(n-1)/2], a[n/2]]; Table[a[n], {n, 0, 100}]]

Formula

G.f.: x*(1 - x)*Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1))).

A309044 Expansion of Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1)))^2.

Original entry on oeis.org

1, 2, 1, 2, 0, -2, 3, 2, -1, -4, 0, -4, 5, 10, -3, -2, 0, -6, -1, -6, 3, 8, -8, -8, 9, 18, 1, 10, -8, -26, 11, 2, -1, 4, -8, -12, 5, 10, -11, -10, 8, 18, -1, 10, -13, -32, 8, 0, 9, 34, 1, 18, -8, -34, 27, 18, -17, -36, -8, -36, 29, 74, -35, -18, 8, -6, 7, 10, -13, -24
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 69; CoefficientList[Series[Product[(1 + x^(2^k) - x^(2^(k + 1)))^2, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    nmax = 69; A[] = 1; Do[A[x] = (1 + x - x^2)^2 A[x^2] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = (1 + x - x^2)^2 * A(x^2).
a(n) = Sum_{k=0..n} A005590(k+1)*A005590(n-k+1).

A309047 Expansion of Product_{k>=0} (1 + x^(2^k) - x^(3*2^k)).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, -1, 1, 1, 0, -1, 0, 0, -1, -1, 1, 2, 1, 0, 0, -1, -1, -1, 0, 1, 0, 0, -1, -1, -1, 0, 1, 2, 2, 1, 1, -1, 0, -1, 0, 0, -1, -1, -1, 0, -1, 0, 0, 1, 1, 1, 0, -1, 0, 0, -1, -1, -1, 0, -1, 0, 0, 1, 1, 1, 2, 1, 2, 0, 1, -1, 1, 0, -1, -2, 0, 1, -1, -1, 0, 1, 0, 0, -1, -1, -1, 0, -1, 0, 0, 1, -1, -1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, -1, -1, -1, 0, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 109; CoefficientList[Series[Product[(1 + x^(2^k) - x^(3 2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    nmax = 109; A[] = 1; Do[A[x] = (1 + x - x^3) A[x^2] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 1; a[n_] := If[EvenQ[n], a[n/2], a[(n - 1)/2] - a[(n - 3)/2]]; Table[a[n], {n, 0, 109}]

Formula

G.f. A(x) satisfies: A(x) = (1 + x - x^3) * A(x^2).
a(0) = a(1) = 1; a(2*n) = a(n), a(2*n+1) = a(n) - a(n-1).

A325055 a(0) = 0, a(1) = 1; a(2*n) = a(n-1) + a(n), a(2*n+1) = a(n+1) - a(n).

Original entry on oeis.org

0, 1, 1, 0, 2, -1, 1, 2, 2, -3, 1, 2, 0, 1, 3, 0, 4, -5, -1, 4, -2, 1, 3, -2, 2, 1, 1, 2, 4, -3, 3, 4, 4, -9, -1, 4, -6, 5, 3, -6, 2, 3, -1, 2, 4, -5, 1, 4, 0, -1, 3, 0, 2, 1, 3, 2, 6, -7, 1, 6, 0, 1, 7, 0, 8, -13, -5, 8, -10, 5, 3, -10, -2, 11, -1, -2
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 04 2019

Keywords

Crossrefs

Cf. A001196 (positions of 0's), A002487, A005590, A075825.

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = If[EvenQ[n], a[(n - 2)/2] + a[n/2], a[(n + 1)/2] - a[(n - 1)/2]]; Table[a[n], {n, 0, 75}]

Formula

a(n) = Sum_{k=1..n} a(2*k-1) = Sum_{k=1..n} (-1)^(n-k) * a(2*k).
a(2^k) = 2^floor(k/2).
Previous Showing 21-30 of 33 results. Next