A245556
Irregular triangle read by rows: T(n,k) (n>=0, 0 <= k <= 2n) = number of triples (u,v,w) with entries in the range 0 to n which have some pair adding up to k.
Original entry on oeis.org
1, 4, 6, 4, 7, 12, 19, 12, 7, 10, 18, 28, 36, 28, 18, 10, 13, 24, 37, 48, 61, 48, 37, 24, 13, 16, 30, 46, 60, 76, 90, 76, 60, 46, 30, 16, 19, 36, 55, 72, 91, 108, 127, 108, 91, 72, 55, 36, 19, 22, 42, 64, 84, 106, 126, 148, 168, 148, 126, 106, 84, 64, 42, 22
Offset: 0
Triangle begins:
[1]
[4, 6, 4]
[7, 12, 19, 12, 7]
[10, 18, 28, 36, 28, 18, 10]
[13, 24, 37, 48, 61, 48, 37, 24, 13]
[16, 30, 46, 60, 76, 90, 76, 60, 46, 30, 16]
[19, 36, 55, 72, 91, 108, 127, 108, 91, 72, 55, 36, 19]
[22, 42, 64, 84, 106, 126, 148, 168, 148, 126, 106, 84, 64, 42, 22]
...
See A245557 for specific examples; also the Example section of A090381 for some of the T(10,10)= 331 triples with n=k=10.
Rows are the partial sums of the rows of
A245557.
Main "spine" of triangle is
A090381.
-
with(LinearAlgebra);
M:=10; A:=Array(0..M,0..2*M); B:=Array(0..M,0..2*M);
for n from 0 to M do
for i from 0 to n do for j from 0 to n do for k from 0 to n do
s1:={i+j,i+k,j+k}; s1:=convert(s1,list); m1:=max(i,j,k);
for r1 from 1 to nops(s1) do
s:=s1[r1]; A[n,s] := A[n,s]+1;
if (m1=n) then B[n,s] := B[n,s]+1; fi;
od:
od: od: od: od:
lprint("A245556");
for i from 0 to M do lprint([seq(A[i,j],j=0..2*i)]); od:
lprint("A245557");
for i from 0 to M do lprint([seq(B[i,j],j=0..2*i)]); od:
A143804
Triangle read by rows, thrice the Connell numbers (A001614) - 2.
Original entry on oeis.org
1, 4, 10, 13, 19, 25, 28, 34, 40, 46, 49, 55, 61, 67, 73, 76, 82, 88, 94, 100, 106, 109, 115, 121, 127, 133, 139, 145, 148, 154, 160, 166, 172, 178, 184, 190, 193, 199, 205, 211, 217, 223, 229, 235, 241, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298
Offset: 1
First few rows of the triangle:
1;
4, 10;
13, 19, 25;
28, 34, 40, 46;
49, 55, 61, 67, 73;
76, 82, 88, 94, 100, 106;
...
A095266
A sequence generated from the Narayana triangle considered as a matrix, or from Pascal's triangle.
Original entry on oeis.org
1, 42, 303, 1144, 3105, 6906, 13447, 23808, 39249, 61210, 91311, 131352, 183313, 249354, 331815, 433216, 556257, 703818, 878959, 1084920, 1325121, 1603162, 1922823, 2288064, 2703025, 3172026, 3699567, 4290328, 4949169, 5681130
Offset: 1
a(7) = 23808 = 5*a(6) - 10*a(5) + 10*a(4) - 5*a(3) + a(2) = 5*13447 - 10*6906 + 10*3105 - 5*1144 + 303.
-
a[n_] := (MatrixPower[{{1, 0, 0, 0, 0}, {1, 1, 0, 0, 0}, {1, 3, 1, 0, 0}, {1, 6, 6, 1, 0}, {1, 10, 20, 10, 1}}, n].{{1}, {0}, {0}, {0}, {0}})[[5, 1]]; Table[ a[n], {n, 30}] (* Robert G. Wilson v, Jun 05 2004 *)
A112338
Triangle read by rows, generated from A001263.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 12, 14, 1, 1, 5, 22, 57, 42, 1, 1, 6, 35, 148, 303, 132, 1, 1, 7, 51, 305, 1144, 1743, 429, 1, 8, 70, 546, 3105, 9784, 10629, 1430, 1
Offset: 0
In the array, antidiagonal terms (1, 3, 5, 1) become row 3 of the triangle.
First few rows of the array:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 14, 42, 132, ...
1, 3, 12, 57, 303, 1743, ...
1, 4, 22, 148, 1144, 9784, ...
1, 5, 35, 305, 3105, 35505, ...
First few rows of the triangle:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 12, 14, 1;
1, 5, 22, 57, 42, 1;
1, 6, 35, 148, 303, 132, 1;
A329530
a(n) = n * (7*binomial(n, 2) + 1).
Original entry on oeis.org
0, 1, 16, 66, 172, 355, 636, 1036, 1576, 2277, 3160, 4246, 5556, 7111, 8932, 11040, 13456, 16201, 19296, 22762, 26620, 30891, 35596, 40756, 46392, 52525, 59176, 66366, 74116, 82447, 91380, 100936, 111136, 122001, 133552, 145810, 158796, 172531, 187036, 202332, 218440
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 144.
-
Table[n (7 Binomial[n, 2] + 1), {n, 0, 40}]
nmax = 40; CoefficientList[Series[x (1 + 12 x + 8 x^2)/(1 - x)^4, {x, 0, nmax}], x]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 16, 66}, 41]
Comments