cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A083734 Pseudoprimes to bases 3 and 5.

Original entry on oeis.org

1541, 1729, 1891, 2821, 6601, 8911, 15841, 29341, 41041, 46657, 52633, 63973, 75361, 88831, 101101, 112141, 115921, 126217, 146611, 162401, 172081, 188461, 218791, 252601, 294409, 314821, 334153, 340561, 342271, 399001, 410041, 416641
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=1541 since it is the first nonprime number such that 3^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k). - clarified by _Harvey P. Dale_, Jan 29 2013
		

Crossrefs

Intersection of A005935 and A005936.

Programs

  • Mathematica
    Select[Range[420000],!PrimeQ[#]&&PowerMod[3,#-1,#]==PowerMod[5,#-1,#]==1&] (* Harvey P. Dale, Jan 29 2013 *)

Formula

a(n) = n-th positive integer k(>1) such that 3^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k).

A217841 Fermat pseudoprimes n to base 3 for which sqrt(8*n + 1) is an integer.

Original entry on oeis.org

91, 703, 1891, 2701, 7381, 8911, 10585, 12403, 16471, 18721, 29161, 38503, 41041, 49141, 79003, 88831, 93961, 104653, 115921, 146611, 188191, 218791, 226801, 269011, 286903, 314821, 334153, 364231, 385003, 497503, 534061, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1237951
Offset: 1

Views

Author

Marius Coman, Oct 12 2012

Keywords

Crossrefs

Cf. A005935, A210461 (subsequence).

Programs

  • PARI
    list(lim)=my(v=List(),n); lim\=1; forstep(k=27,sqrtint(8*lim+1),2, n=k^2>>3; if(Mod(3,n)^(n-1)==1, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jun 30 2017

Extensions

a(15)-a(18) and a(35) from Charles R Greathouse IV, Jun 30 2017

A217853 Fermat pseudoprimes to base 3 of the form (3^(4*k + 2) - 1)/8.

Original entry on oeis.org

91, 7381, 597871, 48427561, 3922632451, 317733228541, 25736391511831, 2084647712458321, 168856464709124011, 1107867264956562636991, 588766087155780604365200461, 47690053059618228953581237351, 25344449488056571213320166359119221, 166284933091139163730593611482181209801
Offset: 1

Views

Author

Marius Coman, Oct 12 2012

Keywords

Comments

These numbers were obtained for values of k from 1 to 20, with the following exceptions: k = 10, 12, 13, 16, 17, 19, for which were obtained 3^n mod n = 3^7, 3^31, 3^37, 3^25, 3^31, 3^13.
Conjecture: There are infinitely many Fermat pseudoprimes to base 3 of the form (3^(4*k + 2) - 1)/8, where k is a natural number.
It is true: for example, when 2k+1 is a prime number (see A210461). - Bruno Berselli, Jan 22 2013

Crossrefs

Cf. A005935, A210461 (subsequence), A217841.

Programs

  • Mathematica
    Select[Table[(3^(4k + 2) - 1)/8, {k, 80}], PowerMod[3, # - 1, #] == 1 &] (* Alonso del Arte, May 14 2019 *)
  • PARI
    list(lim)=my(v=List(),t); lim\=1; for(k=1,(logint(8*lim+1,3)-2)\4, t=3^(4*k + 2)>>3; if(Mod(3,t)^t==3, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jun 30 2017

A306451 Non-coprime pseudoprimes or primes to base 3: numbers k that are multiples of 3 and are such that k divides 3^k - 3.

Original entry on oeis.org

3, 6, 66, 561, 726, 7107, 8205, 8646, 62745, 100101, 140097, 166521, 237381, 237945, 566805, 656601, 876129, 1053426, 1095186, 1194285, 1234806, 1590513, 1598871, 1938021, 2381259, 2518041, 3426081, 4125441, 5398401, 5454681, 5489121, 5720331, 5961441
Offset: 1

Views

Author

Jianing Song, Feb 17 2019

Keywords

Comments

Union of {3} and (A122780 - {1} - A005935).
Numbers of the form 3*m such that 3^(3*m-1) == 1 (mod m).
The squarefree terms are listed in A306450.

Crossrefs

A258801 is a subsequence.

Programs

  • PARI
    forstep(n=3, 1e7, 3, if(Mod(3, n)^n==3, print1(n, ", ")))

Formula

66 is a term because 66 divides 3^66 - 3 = 3*(3^65 - 1) = 3*(3^5 - 1)*(3^60 + 3^55 + ... + 3^5 + 1) and 66 is divisible by 3.

A333130 Numbers that are super pseudoprimes to both bases 2 and 3.

Original entry on oeis.org

2701, 18721, 31621, 49141, 83333, 90751, 104653, 226801, 282133, 653333, 665281, 721801, 873181, 1373653, 1530787, 1537381, 1584133, 1690501, 1755001, 1987021, 2008597, 2035153, 2284453, 2746589, 2944261, 3059101, 3116107, 3363121, 3375041, 3375487, 4082653, 4314967
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2020

Keywords

Comments

The first term that has more than 2 prime factors is a(1067) = A333131(1) = 11500521553.
The first term that is also a Carmichael number is a(1131) = 13079177569.

Examples

			2701 is a term since it is a Fermat pseudoprime to both bases 2 and 3, and its proper divisors that are larger than 1 are all primes: 37 and 73.
		

Crossrefs

Intersection of A050217 and A328662.
Subsequence of A001567, A005935, A052155 and A153513.

Programs

  • Mathematica
    pspQ[n_] := CompositeQ[n] && AllTrue[Rest @ Divisors[n], PowerMod[2, # - 1, #] == 1 && PowerMod[3, # - 1, #] == 1 &]; Select[Range[10^6], pspQ]

A333131 Super pseudoprimes to both bases 2 and 3 (A333130) with more than two prime factors (counted with multiplicity).

Original entry on oeis.org

11500521553, 13079177569, 52474339009, 168003672409, 229352039821, 280792563977, 318289021201, 428178002569, 918660756421, 2015841188197, 2367478228501, 2544457029601, 2639665216117, 3023595814801, 3457449931321, 3712164285421, 4348114583017, 6046196043229
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2020

Keywords

Comments

Up to 2^64 all the 1085 terms are nonsquarefree, 2 terms have 4 prime factors: a(163) = 18362297383286473 = 3037 * 6073 * 9109 * 109297 and a(651) = 2587580959818925201 = 18121 * 36241 * 54361 * 72481, and no term have more than 4 prime factors.

Examples

			11500521553 is a term since it is a Fermat pseudoprime to both bases 2 and 3, and its proper divisors that are larger than 1 are either primes (937, 1873, 6553) or Fermat pseudoprimes to both bases 2 and 3 (1755001, 6140161, 12273769, 11500521553).
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PrimeOmega[n] > 2 && AllTrue[Rest @ Divisors[n], PowerMod[2, # - 1, #] == 1 && PowerMod[3, # - 1, #] == 1 &]; seq = {}; Do[If[pspQ[n], AppendTo[seq, n]], {n, 1, 6*10^10}]; seq

A057943 Numbers k such that the smallest palindromic pseudoprime to base k is 101101.

Original entry on oeis.org

2, 51, 60, 75, 96, 200, 207, 279, 288, 348, 402, 432, 464, 492, 500, 531, 555, 590, 646, 652, 662, 675, 695, 732, 750, 790, 843, 855, 860, 888, 894, 920, 927, 983, 984, 1074, 1102, 1139, 1140, 1150, 1152, 1163, 1164, 1203, 1215, 1230, 1251, 1278, 1283, 1336
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Examples

			2 is a term since 101101 is the least Fermat pseudoprime to base 2 (A001567) which is also a palindrome in base 10 (A002113).
3 is not a term since the least Fermat pseudoprime to base 3 (A005935) which is also a palindrome in base 10 is 121.
		

Crossrefs

Programs

  • Mathematica
    palinComps = Select[Range[2, 101100], PalindromeQ[#] && CompositeQ[#] &]; seqQ[n_] := PowerMod[n, 101100, 101101] == 1 && AllTrue[palinComps, PowerMod[n, #-1, #] != 1 &]; Select[Range[1336], seqQ] (* Amiram Eldar, Jan 30 2020 *)

A083738 Pseudoprimes to bases 2,3 and 7.

Original entry on oeis.org

1105, 2465, 10585, 18721, 29341, 46657, 75361, 104653, 115921, 162401, 226801, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461, 530881, 534061, 552721, 574561, 658801, 721801, 852841, 1024651
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=1105 since it is the first number such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
		

Crossrefs

Intersection of A001567 and A083735. Intersection of A005935 and A083733. - R. J. Mathar, Apr 05 2011

Programs

  • Mathematica
    Select[Range[1, 10^5, 2], CompositeQ[#] &&  PowerMod[2, #-1,#] == PowerMod[3, #-1,#] == PowerMod[7, #-1,#] == 1&] (* Amiram Eldar, Jun 29 2019 *)

Formula

a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).

A083740 Pseudoprimes to bases 3,5 and 7.

Original entry on oeis.org

29341, 46657, 75361, 88831, 115921, 146611, 162401, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 658801, 721801, 852841, 954271, 1024651, 1152271, 1193221, 1314631, 1461241, 1569457, 1615681
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=29341 since it is the first number such that 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^5, 2], CompositeQ[#] &&  PowerMod[3, #-1, #] == PowerMod[5, #-1, #] == PowerMod[7, #-1, #] == 1&]

Formula

a(n) = n-th positive integer k(>1) such that 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
Intersection of A083734 and A005938. Intersection of A083735 and A005936. - R. J. Mathar, Apr 05 2011

A247033 Numbers of the form (3^k - 3)/k.

Original entry on oeis.org

0, 3, 8, 48, 121, 312, 16104, 122640, 7596480, 61171656, 4093181688, 2366564736720, 19924948267224, 12169835294351280, 889585277491970400, 7633882962663652968, 565719454445904325272, 365721616371321130128240, 239498069351503974657030696, 2084811062715550992506283600
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 09 2014

Keywords

Comments

Generated by k: 1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 66, 67, ...
Subsequence of A246445.

Examples

			121 is in this sequence because (3^k - 3)/k = (3^6 - 3)/6 = 121.
		

Crossrefs

Cf. A000040, A005935, A064535 (with form (2^k - 2)/k), A122780 (nonprimes k in a(n)), A246445, A247307 (with form (4^k - 4)/k).
Previous Showing 21-30 of 43 results. Next