A083734 Pseudoprimes to bases 3 and 5.
1541, 1729, 1891, 2821, 6601, 8911, 15841, 29341, 41041, 46657, 52633, 63973, 75361, 88831, 101101, 112141, 115921, 126217, 146611, 162401, 172081, 188461, 218791, 252601, 294409, 314821, 334153, 340561, 342271, 399001, 410041, 416641
Offset: 1
Examples
a(1)=1541 since it is the first nonprime number such that 3^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k). - clarified by _Harvey P. Dale_, Jan 29 2013
Links
- Amiram Eldar, Table of n, a(n) for n = 1..15806 (terms 1..147 from R. J. Mathar)
- F. Richman, Primality testing with Fermat's little theorem
Programs
-
Mathematica
Select[Range[420000],!PrimeQ[#]&&PowerMod[3,#-1,#]==PowerMod[5,#-1,#]==1&] (* Harvey P. Dale, Jan 29 2013 *)
Formula
a(n) = n-th positive integer k(>1) such that 3^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k).
Comments