cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A306449 Pseudoprimes to base 10 that are not squarefree.

Original entry on oeis.org

9, 99, 657, 909, 1233, 11169, 13833, 19503, 20961, 23661, 51291, 69921, 90009, 99297, 109737, 139329, 203841, 237169, 256059, 321201, 339021, 346473, 460251, 475641, 686169, 760761, 927081, 1080801, 1621089, 1679931, 3100833, 3316941, 3845601, 3846051, 3942657, 4095081, 4281057
Offset: 1

Views

Author

Jianing Song, Feb 16 2019

Keywords

Comments

Numbers k that are not squarefree and satisfy 10^(k-1) == 1 (mod k).
Any term is divisible by the square of a base-10 Wieferich prime (A045616 = {3, 487, 56598313, ...}).
Intersection of A005939 and A013929.

Crossrefs

Pseudoprimes to base b that are not squarefree: A158358 (b=2), A244065 (b=3), A243010 (b=5), A243089 (b=7), A243090 (b=8), A306448 (b=9), this sequence (b=10).
Cf. also A045616, A005939, A013929.

Programs

  • PARI
    for(n=1, 10^6, if(Mod(10, n)^(n-1)==1 && !issquarefree(n), print1(n, ", ")))

A020198 Pseudoprimes to base 70.

Original entry on oeis.org

69, 169, 213, 341, 377, 561, 671, 703, 781, 897, 949, 1441, 1541, 1633, 1649, 1891, 2001, 2201, 2701, 2769, 2873, 3053, 3201, 4061, 4331, 4371, 4899, 4901, 6001, 6177, 6409, 6681, 7449, 7991, 9301, 9361, 11661, 12121, 12209, 12337, 12441, 12673, 12881
Offset: 1

Views

Author

Keywords

Comments

Composite numbers n such that 70^(n-1) == 1 (mod n). - Michel Lagneau, Feb 18 2012

Crossrefs

Cf. A001567 (pseudoprimes to base 2).

Programs

  • Mathematica
    base = 70; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)
    Select[Range[10^4], Not[PrimeQ[#]] && PowerMod[70, # - 1, #] == 1 &] (* Alonso del Arte, Jun 12 2015, based on Farideh Firoozbakht's program for A005939 *)
  • PARI
    forcomposite(n=4,1e6, if(Mod(70,n)^(n-1)==1, print1(n", "))) \\ Charles R Greathouse IV, Jun 12 2015
Previous Showing 11-12 of 12 results.