A159572
A triangular array related to ordered partitions and having row sums 1,2,5,14,43,144,523,2048,8597... A047970.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 5, 2, 1, 10, 14, 12, 6, 1, 15, 30, 39, 39, 20, 1, 21, 55, 95, 138, 142, 71, 1, 28, 91, 195, 364, 548, 551, 270, 1, 36, 140, 357, 804, 1564, 2317, 2278, 1100
Offset: 1
A305402
A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)).
Original entry on oeis.org
1, 1, -2, 3, -4, 2, 15, -18, 9, -2, 105, -120, 60, -16, 2, 945, -1050, 525, -150, 25, -2, 10395, -11340, 5670, -1680, 315, -36, 2, 135135, -145530, 72765, -22050, 4410, -588, 49, -2, 2027025, -2162160, 1081080, -332640, 69300, -10080, 1008, -64, 2
Offset: 0
The first few terms of the Taylor expansion of f(u; p) are:
f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... )
The first few rows of the T(n, k) triangle are:
n=0: 1
n=1: 1, -2
n=2: 3, -4, 2
n=3: 15, -18, 9, -2
n=4: 105, -120, 60, -16, 2
n=5: 945, -1050, 525, -150, 25, -2
n=6: 10395, -11340, 5670, -1680, 315, -36, 2
- J. W. Goodman, Introduction to Fourier Optics, 1996.
- A. Papoulis, Systems and Transforms with Applications in Optics, 1968.
- Andrew Howroyd, Rows n=0..50 of triangle, flattened
- M. J. Bastiaans, The Wigner distribution function applied to optical signals and systems, Optics Communications, Vol. 25, nr. 1, pp. 26-30, 1978.
- H. J. Butterweck, General theory of linear, coherent optical data processing systems, Journal of the Optical Society of America, Vol. 67, nr. 1, pp. 60-70, 1977.
- J. W. Meijer, A note on optical diffraction, 1979.
-
[[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
-
T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8);
-
Table[If[n==0 && k==0,1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 08 2018 *)
-
T(n,k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018
A342713
Partition the integers from 1 to n into three groups with consecutive numbers, then a(n) is the maximum value of the sum of the numbers in the second group multiplied by the minimum of the sum of the numbers in the first and third groups.
Original entry on oeis.org
2, 9, 21, 54, 90, 144, 234, 350, 504, 714, 950, 1350, 1764, 2156, 2772, 3500, 4374, 5390, 6380, 7812, 9504, 10890, 12740, 14850, 17442, 20475, 23100, 26334, 30444, 34320, 38709, 43146, 48510, 55250, 61047, 66780, 74925, 83600, 92169, 100485, 109350, 121512, 133331, 144000, 156195, 171171
Offset: 3
a(3) = 2 as the only partition is {1},{2},{3}. The minimum sum of the first and third group is 1, thus a(3) = 2*1 = 2.
a(5) = 21 as the three group partition {1,2},{3,4},{5} has a minimum sum of the first and third groups of 1+2 = 3, thus a(5) = 3*(3+4) = 3*7 = 21.
a(12) = 714 as the three group partition {1,2,3,4,5,6},{7,8,9,10},{11,12} has a minimum sum of the first and third groups of 1+2+3+4+5+6 = 21, thus a(12) = 21*(7+8+9+10) = 21*34 = 714.
Comments