A234713
Triangle, read by rows, based on the Fibonacci numbers.
Original entry on oeis.org
0, 1, 1, 1, 3, 2, 2, 6, 7, 3, 3, 13, 20, 14, 4, 5, 25, 51, 51, 25, 5, 8, 48, 118, 154, 111, 41, 6, 13, 89, 260, 416, 393, 217, 63, 7, 21, 163, 548, 1042, 1218, 890, 392, 92, 8, 34, 294, 1121, 2465, 3435, 3127, 1842, 666, 129, 9, 55, 525, 2236, 5586, 9035, 9845
Offset: 0
Triangle begins:
0
1, 1
1, 3, 2
2, 6, 7, 3
3, 13, 20, 14, 4
5, 25, 51, 51, 25, 5
8, 48, 118, 154, 111, 41, 6
13, 89, 260, 416, 393, 217, 63, 7
21, 163, 548, 1042, 1218, 890, 392, 92, 8
A370377
a(n) is the number of symmetrical linear hydrocarbon chains with n C-C bonds.
Original entry on oeis.org
1, 3, 2, 6, 5, 14, 11, 31, 25, 70, 56, 157, 126, 353, 283, 793, 636, 1782, 1429, 4004, 3211, 8997, 7215, 20216, 16212, 45425, 36428, 102069, 81853, 229347, 183922, 515338, 413269, 1157954, 928607, 2601899, 2086561, 5846414, 4688460, 13136773, 10534874
Offset: 0
For n = 1: a(1) = A006356(1) = 3
CH3-CH3, CH2=CH2, CH≡CH
For n = 3: a(3) = A006356(2) = 6
CH3-CH2-CH2-CH3, CH3-CH=CH-CH3, CH3-C≡C-CH3, CH2=CH-CH=CH2, CH≡C-C≡CH, CH2=C=C=CH2
For n = 4: a(4) = A006356(2) - A006356(0) = 6 - 1 = 5
CH3-CH2-CH2-CH2-CH3, CH3-CH=C=CH-CH3, CH2=CH-CH2-CH=CH2, CH≡C-CH2-C≡CH, CH2=C=C=C=CH2
-
LinearRecurrence[{0, 2, 0, 1, 0, -1}, {1, 3, 2, 6, 5, 14}, 50] (* Paolo Xausa, Feb 22 2024 *)
-
Vec(O(x^55)+(1+3*x-x^5)/(1-2*x^2-x^4+x^6)) \\ Joerg Arndt, Feb 18 2024
-
a = [1, 3, 2, 6, 5, 14]
for i in range(30):
a.append(2*a[-2]+a[-4]-a[-6])
print(a)
A120771
Expansion of ( 1-x^3+x^4+x^5-x^8 ) / ( 1-2*x^3-x^6+x^9 ).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 3, 2, 1, 6, 5, 3, 14, 11, 6, 31, 25, 14, 70, 56, 31, 157, 126, 70, 353, 283, 157, 793, 636, 353, 1782, 1429, 793, 4004, 3211, 1782, 8997, 7215, 4004, 20216, 16212, 8997, 45425, 36428, 20216, 102069, 81853, 45425, 229347, 183922, 102069, 515338, 413269, 229347, 1157954, 928607, 515338
Offset: 0
-
CoefficientList[Series[(1-x^3+x^4+x^5-x^8)/(1-2*x^3-x^6+x^9),{x,0,60}],x] (* or *) LinearRecurrence[{0,0,2,0,0,1,0,0,-1},{1,0,0,1,1,1,3,2,1},60] (* Harvey P. Dale, Feb 19 2016 *)
Original entry on oeis.org
4, 9, 14, 155, 2993, 9707, 184183, 331981, 1942071, 1263047761, 140390505643, 455845099957, 296452328830865, 32951342156444219, 2381929669709247097441, 9063289616192276216577361, 34485996673867704851362967681, 426068342298911680872493712146539, 117190394374593808526426397401539675762247
Offset: 1
-
SemiprimeQ[n_Integer] := Plus @@ (Last /@ FactorInteger[n]) == 2;
a = Table[ SeriesCoefficient[ Series[x/(x^3 - 2*x^2 - x + 1), {x, 0, 50}], n], {n, 0, 50}];
f[n_] = If[SemiprimeQ[a[[n]]] == True, a[[n]], {}];
Flatten[Table[f[n], {n, 1, Length[a]}]]
A122504
a(n) = -a(n-6) + 3*a(n-5) + a(n-4) - 7*a(n-3) + a(n-2) + 3*a(n-1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 0, -3, -13, -39, -107, -273, -675, -1624, -3847, -8995, -20851, -47995, -109915, -250695, -570024, -1292915, -2926953, -6616051, -14936895, -33690357, -75931283, -171029936, -385046687, -866536007, -1949510615, -4384874471, -9860587191, -22170707871, -49842661456
Offset: 1
-
a[0] = 1; a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 1; a[5] = 1; a[n_] := a[n] = -a[n - 6] + 3 a[n - 5] + a[n - 4] - 7 a[n - 3] + a[n - 2] + 3 a[n - 1] Table[a[n], {n, 0, 30}]
M = {{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}, {-1, 3, 1, -7, 1, 3}} v[1] = {1, 1, 1, 1, 1, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
LinearRecurrence[{3,1,-7,1,3,-1},{1,1,1,1,1,1},40] (* or *) Rest[ CoefficientList[ Series[x(1-x-3x^2)(1-x-x^2)/((1-2x-x^2+x^3)(1-x-2x^2+x^3)),{x,0,40}],x]] (* Harvey P. Dale, Jun 24 2011 *)
A122517
G.f.: 1/(1 - x^3 - 2 x^4 + x^5).
Original entry on oeis.org
1, 0, 0, 1, 2, -1, 1, 4, 2, -3, 7, 9, -3, -1, 26, 8, -16, 27, 61, -26, -13, 131, 69, -126, 131, 344, -119, -190, 732, 438, -772, 471, 2092, -628, -1511, 3806, 3085, -4859, 1412, 12208, -2495, -11391, 19891, 20509, -28589, -396, 71682, -7462, -78083, 99479
Offset: 0
-
p[x_] := x^5 - x^2 - 2x + 1 q[x_] := ExpandAll[x^5*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 50}], n], {n, 0, 50}]
A122518
G.f.: 1/(1 -2 x^3 - x^4 + x^5).
Original entry on oeis.org
1, 0, 0, 2, 1, -1, 4, 4, -3, 6, 13, -6, 5, 35, -5, -9, 81, 20, -58, 158, 130, -177, 238, 476, -382, 169, 1367, -526, -520, 3285, 146, -2933, 6576, 4097, -9005, 10073, 17703, -20489, 7044, 54484, -33348, -24104, 136501, -19256, -136040, 282246, 122093, -427837, 447708, 662472
Offset: 0
-
p[x_] := x^5 - 2x^2 - x + 1 q[x_] := ExpandAll[x^5*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 50}], n], {n, 0, 50}]
A319106
Expansion of Product_{k>=1} (1 + x^k)^ceiling(k/2).
Original entry on oeis.org
1, 1, 1, 3, 4, 7, 11, 17, 26, 40, 60, 88, 131, 190, 276, 398, 568, 806, 1142, 1603, 2242, 3124, 4328, 5973, 8214, 11249, 15349, 20879, 28297, 38235, 51513, 69190, 92674, 123811, 164961, 219248, 290705, 384537, 507515, 668376, 878339, 1151899, 1507679, 1969503, 2567976, 3342227
Offset: 0
-
a:=series(mul((1+x^k)^ceil(k/2),k=1..100),x=0,46): seq(coeff(a,x,n),n=0..45); # Paolo P. Lava, Apr 02 2019
-
nmax = 45; CoefficientList[Series[Product[(1 + x^k)^Ceiling[k/2], {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))(1 + x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Ceiling[d/2], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 45}]
Comments