cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-58 of 58 results.

A234713 Triangle, read by rows, based on the Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 1, 3, 2, 2, 6, 7, 3, 3, 13, 20, 14, 4, 5, 25, 51, 51, 25, 5, 8, 48, 118, 154, 111, 41, 6, 13, 89, 260, 416, 393, 217, 63, 7, 21, 163, 548, 1042, 1218, 890, 392, 92, 8, 34, 294, 1121, 2465, 3435, 3127, 1842, 666, 129, 9, 55, 525, 2236, 5586, 9035, 9845
Offset: 0

Views

Author

Philippe Deléham, Dec 29 2013

Keywords

Comments

First column is the Fibonacci sequence.
Sum_{k=0..n} T(n,k)*2^k = -A106732(n).

Examples

			Triangle begins:
0
1, 1
1, 3, 2
2, 6, 7, 3
3, 13, 20, 14, 4
5, 25, 51, 51, 25, 5
8, 48, 118, 154, 111, 41, 6
13, 89, 260, 416, 393, 217, 63, 7
21, 163, 548, 1042, 1218, 890, 392, 92, 8
		

Crossrefs

Cf. Diagonals: A001477, A004006.
Cf. Columns: A000045 (Fibonacci), A131913, A261054.
Cf. A025192 (row sums for n>0), A006054 (diagonal sums)

Formula

G.f.: (y+1)*x/(1-(2y+1)*x+(y^2-1)*x^2).
T(n,k)=T(n-1,k)+2*T(n-1,k-1)+T(n-2,k)-T(n-2,k-2), T(0,0)=0, T(1,0)=1, T(1,1)=1, T(n,k)=0 if k<0 or if k>n.

A370377 a(n) is the number of symmetrical linear hydrocarbon chains with n C-C bonds.

Original entry on oeis.org

1, 3, 2, 6, 5, 14, 11, 31, 25, 70, 56, 157, 126, 353, 283, 793, 636, 1782, 1429, 4004, 3211, 8997, 7215, 20216, 16212, 45425, 36428, 102069, 81853, 229347, 183922, 515338, 413269, 1157954, 928607, 2601899, 2086561, 5846414, 4688460, 13136773, 10534874
Offset: 0

Views

Author

Tomasz Dziekanski, Feb 18 2024

Keywords

Examples

			For n = 1: a(1) = A006356(1) = 3
 CH3-CH3, CH2=CH2, CH≡CH
For n = 3: a(3) = A006356(2) = 6
 CH3-CH2-CH2-CH3, CH3-CH=CH-CH3, CH3-C≡C-CH3, CH2=CH-CH=CH2, CH≡C-C≡CH, CH2=C=C=CH2
For n = 4: a(4) = A006356(2) - A006356(0) = 6 - 1 = 5
 CH3-CH2-CH2-CH2-CH3, CH3-CH=C=CH-CH3, CH2=CH-CH2-CH=CH2, CH≡C-CH2-C≡CH, CH2=C=C=C=CH2
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 0, 1, 0, -1}, {1, 3, 2, 6, 5, 14}, 50] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    Vec(O(x^55)+(1+3*x-x^5)/(1-2*x^2-x^4+x^6)) \\ Joerg Arndt, Feb 18 2024
  • Python
    a = [1, 3, 2, 6, 5, 14]
    for i in range(30):
        a.append(2*a[-2]+a[-4]-a[-6])
    print(a)
    

Formula

a(n) = 2*A306334(n) - A006356(n).
Also:
a(0) = 1;
a(2) = 2;
a(n) = A006356((n+1)/2) if n is odd;
a(n) = A006356(n/2) - A006356((n-4)/2) if n is even.
G.f.: (1+3*x-x^5)/(1-2*x^2-x^4+x^6). - Joerg Arndt, Feb 18 2024

A120771 Expansion of ( 1-x^3+x^4+x^5-x^8 ) / ( 1-2*x^3-x^6+x^9 ).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 2, 1, 6, 5, 3, 14, 11, 6, 31, 25, 14, 70, 56, 31, 157, 126, 70, 353, 283, 157, 793, 636, 353, 1782, 1429, 793, 4004, 3211, 1782, 8997, 7215, 4004, 20216, 16212, 8997, 45425, 36428, 20216, 102069, 81853, 45425, 229347, 183922, 102069, 515338, 413269, 229347, 1157954, 928607, 515338
Offset: 0

Views

Author

Gary W. Adamson, Jul 03 2006

Keywords

Crossrefs

Cf. A077998 (trisection), A006054 (trisection), A006356 (trisection), A038196.

Programs

  • Mathematica
    CoefficientList[Series[(1-x^3+x^4+x^5-x^8)/(1-2*x^3-x^6+x^9),{x,0,60}],x] (* or *) LinearRecurrence[{0,0,2,0,0,1,0,0,-1},{1,0,0,1,1,1,3,2,1},60] (* Harvey P. Dale, Feb 19 2016 *)

Formula

Three consecutive coefficients are generated from the left row of the n-th power of the matrix [1,1,1; 1,1,0; 1,0,0].

A122499 Semiprimes in A006053.

Original entry on oeis.org

4, 9, 14, 155, 2993, 9707, 184183, 331981, 1942071, 1263047761, 140390505643, 455845099957, 296452328830865, 32951342156444219, 2381929669709247097441, 9063289616192276216577361, 34485996673867704851362967681, 426068342298911680872493712146539, 117190394374593808526426397401539675762247
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 15 2006

Keywords

Crossrefs

Intersection of A001358 and A006053.
Cf. A006054.

Programs

  • Mathematica
    SemiprimeQ[n_Integer] := Plus @@ (Last /@ FactorInteger[n]) == 2;
    a = Table[ SeriesCoefficient[ Series[x/(x^3 - 2*x^2 - x + 1), {x, 0, 50}], n], {n, 0, 50}];
    f[n_] = If[SemiprimeQ[a[[n]]] == True, a[[n]], {}];
    Flatten[Table[f[n], {n, 1, Length[a]}]]

Extensions

Edited by N. J. A. Sloane, Sep 17 2006
More terms from Amiram Eldar, Jun 06 2025

A122504 a(n) = -a(n-6) + 3*a(n-5) + a(n-4) - 7*a(n-3) + a(n-2) + 3*a(n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, -3, -13, -39, -107, -273, -675, -1624, -3847, -8995, -20851, -47995, -109915, -250695, -570024, -1292915, -2926953, -6616051, -14936895, -33690357, -75931283, -171029936, -385046687, -866536007, -1949510615, -4384874471, -9860587191, -22170707871, -49842661456
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 15 2006

Keywords

Comments

Original name started "Bi_Steinbach heptagon recursion".

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 1; a[5] = 1; a[n_] := a[n] = -a[n - 6] + 3 a[n - 5] + a[n - 4] - 7 a[n - 3] + a[n - 2] + 3 a[n - 1] Table[a[n], {n, 0, 30}]
    M = {{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}, {-1, 3, 1, -7, 1, 3}} v[1] = {1, 1, 1, 1, 1, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    LinearRecurrence[{3,1,-7,1,3,-1},{1,1,1,1,1,1},40] (* or *) Rest[ CoefficientList[ Series[x(1-x-3x^2)(1-x-x^2)/((1-2x-x^2+x^3)(1-x-2x^2+x^3)),{x,0,40}],x]] (* Harvey P. Dale, Jun 24 2011 *)

Formula

O.g.f.: x*(1-x-3*x^2)*(1-x-x^2)/((1-2*x-x^2+x^3)*(1-x-2*x^2+x^3)). - R. J. Mathar, Aug 22 2008

A122517 G.f.: 1/(1 - x^3 - 2 x^4 + x^5).

Original entry on oeis.org

1, 0, 0, 1, 2, -1, 1, 4, 2, -3, 7, 9, -3, -1, 26, 8, -16, 27, 61, -26, -13, 131, 69, -126, 131, 344, -119, -190, 732, 438, -772, 471, 2092, -628, -1511, 3806, 3085, -4859, 1412, 12208, -2495, -11391, 19891, 20509, -28589, -396, 71682, -7462, -78083, 99479
Offset: 0

Views

Author

Roger L. Bagula, Sep 16 2006

Keywords

Comments

Based on characteristic polynomial x^5 - x^2 - 2x + 1.

Crossrefs

Programs

  • Mathematica
    p[x_] := x^5 - x^2 - 2x + 1 q[x_] := ExpandAll[x^5*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 50}], n], {n, 0, 50}]

Extensions

Edited by N. J. A. Sloane, Oct 01 2006

A122518 G.f.: 1/(1 -2 x^3 - x^4 + x^5).

Original entry on oeis.org

1, 0, 0, 2, 1, -1, 4, 4, -3, 6, 13, -6, 5, 35, -5, -9, 81, 20, -58, 158, 130, -177, 238, 476, -382, 169, 1367, -526, -520, 3285, 146, -2933, 6576, 4097, -9005, 10073, 17703, -20489, 7044, 54484, -33348, -24104, 136501, -19256, -136040, 282246, 122093, -427837, 447708, 662472
Offset: 0

Views

Author

Roger L. Bagula, Sep 16 2006

Keywords

Comments

Based on characteristic polynomial x^5 - 2x^2 - x + 1.

Crossrefs

Programs

  • Mathematica
    p[x_] := x^5 - 2x^2 - x + 1 q[x_] := ExpandAll[x^5*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 50}], n], {n, 0, 50}]

Extensions

Edited by N. J. A. Sloane, Oct 01 2006

A319106 Expansion of Product_{k>=1} (1 + x^k)^ceiling(k/2).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 11, 17, 26, 40, 60, 88, 131, 190, 276, 398, 568, 806, 1142, 1603, 2242, 3124, 4328, 5973, 8214, 11249, 15349, 20879, 28297, 38235, 51513, 69190, 92674, 123811, 164961, 219248, 290705, 384537, 507515, 668376, 878339, 1151899, 1507679, 1969503, 2567976, 3342227
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Comments

Weigh transform of 1, 1, 2, 2, 3, 3, 4, 4, ... (A110654).

Crossrefs

Programs

  • Maple
    a:=series(mul((1+x^k)^ceil(k/2),k=1..100),x=0,46): seq(coeff(a,x,n),n=0..45); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 45; CoefficientList[Series[Product[(1 + x^k)^Ceiling[k/2], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))(1 + x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Ceiling[d/2], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 45}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A110654(k).
G.f.: Product_{k>=1} ((1 + x^(2*k-1))*(1 + x^(2*k)))^k.
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d*ceiling(d/2) ) * x^k/k).
a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(5/3) + Pi^2 * n^(1/3) / (2^(10/3) * 3^(4/3) * Zeta(3)^(1/3)) - Pi^4 / (2^7 * 3^4 * Zeta(3))) * Zeta(3)^(1/6) / (2^(7/8) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Sep 11 2018
Previous Showing 51-58 of 58 results.