cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A257602 Expansion of (1 + x + 21*x^2 + x^3 + x^4)/(1 - x)^5.

Original entry on oeis.org

1, 6, 41, 156, 426, 951, 1856, 3291, 5431, 8476, 12651, 18206, 25416, 34581, 46026, 60101, 77181, 97666, 121981, 150576, 183926, 222531, 266916, 317631, 375251, 440376, 513631, 595666, 687156, 788801, 901326, 1025481, 1162041, 1311806, 1475601, 1654276, 1848706, 2059791, 2288456, 2535651
Offset: 0

Views

Author

N. J. A. Sloane, Jun 07 2015

Keywords

Comments

If x is replaced by x^5, this is the Molien series for the Heisenberg group H(5).

Programs

  • Magma
    I:=[1,6,41,156,426]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..45]]; // Vincenzo Librandi, Jun 08 2015
    
  • Mathematica
    CoefficientList[Series[(1 +x +21x^2 +x^3 +x^4)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 08 2015 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,6,41,156,426},40] (* Harvey P. Dale, Dec 01 2017 *)
  • Sage
    [1 + 5*n*(n+1)*(5*n^2+5*n+2)/24 for n in (0..50)] # G. C. Greubel, Mar 24 2022

Formula

G.f.: (1 + x + 21*x^2 + x^3 + x^4)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Jun 08 2015
a(n) = (25/24)*n^4 + (25/12)*n^3 + (35/24)*n^2 + (5/12)*n + 1 = 1 + 5*n*(n+1)*(5*n^2 + 5*n + 2)/24 = 1 + 5*A006322(n). - R. J. Mathar, Nov 09 2018
E.g.f.: (1/24)*(24 + 120*x + 360*x^2 + 200*x^3 + 25*x^4)*exp(x). - G. C. Greubel, Mar 24 2022

A373423 Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(0) = 1, cf(1) = -1/(x - 1), and for n > 1 is cf(n) = ~( ~x - 1/(~x - 1/(~x - 1/(~x - 1/(~x - ... 1/(~x + 1))))...) ) where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 1, 1, 0, 1, 4, 3, 1, 1, 0, 1, 5, 6, 5, 1, 1, 0, 1, 6, 10, 14, 8, 1, 1, 0, 1, 7, 15, 30, 31, 13, 1, 1, 0, 1, 8, 21, 55, 85, 70, 21, 1, 1, 0, 1, 9, 28, 91, 190, 246, 157, 34, 1, 1, 0, 1, 10, 36, 140, 371, 671, 707, 353, 55, 1, 1, 0
Offset: 0

Views

Author

Peter Luschny, Jun 09 2024

Keywords

Examples

			Generating functions of row n:
   gf0 = 1;
   gf1 =   - 1/( x-1);
   gf2 = x + 1/(-x+1);
   gf3 = x - 1/( x-1/( x+1));
   gf4 = x + 1/(-x-1/(-x-1/(-x+1)));
   gf5 = x - 1/( x-1/( x-1/( x-1/( x+1))));
   gf6 = x + 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x+1)))));
.
Array begins:
  [0] 1, 0,  0,   0,   0,    0,     0,     0,      0, ...
  [1] 1, 1,  1,   1,   1,    1,     1,     1,      1, ...
  [2] 1, 2,  1,   1,   1,    1,     1,     1,      1, ...  A373565
  [3] 1, 3,  3,   5,   8,   13,    21,    34,     55, ...  A373566
  [4] 1, 4,  6,  14,  31,   70,   157,   353,    793, ...  A373567
  [5] 1, 5, 10,  30,  85,  246,   707,  2037,   5864, ...  A373568
  [6] 1, 6, 15,  55, 190,  671,  2353,  8272,  29056, ...  A373569
       A000217,  A006322,     A108675, ...
            A000330,   A085461,      A244881, ...
.
Triangle starts:
  [0] 1;
  [1] 1, 0;
  [2] 1, 1,  0;
  [3] 1, 2,  1,  0;
  [4] 1, 3,  1,  1,  0;
  [5] 1, 4,  3,  1,  1,  0;
  [6] 1, 5,  6,  5,  1,  1, 0;
		

Crossrefs

Cf. A373424, A276312 (main diagonal).
Columns include: A000217, A000330, A006322, A085461, A108675, A244881.

Programs

  • Maple
    row := proc(n, len) local x, a, j, ser;
    if n = 0 then a := -1 elif n = 1 then a := -1/(x - 1) elif irem(n, 2) = 1 then
      a :=  x + 1; for j from 1 to n-1 do a :=  x - 1 / a od: else
      a := -x + 1; for j from 1 to n-1 do a := -x - 1 / a od: fi;
    ser := series((-1)^(n-1)*a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
    A := (n, k) -> row(n, 12)[k+1]:      # array form
    T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
    seq(lprint([n], row(n, 9)), n = 0..9);
  • SageMath
    def Arow(n, len):
        R. = PowerSeriesRing(ZZ, len)
        if n == 0: return [1] + [0]*(len - 1)
        if n == 1: return [1]*(len - 1)
        x = x if n % 2 == 1 else -x
        a = x + 1
        for _ in range(n - 1):
            a = x - 1 / a
        if n % 2 == 0: a = -a
        return a.list()
    for n in range(8): print(Arow(n, 9))
Previous Showing 21-22 of 22 results.