A057850
Primes p whose order of primeness A078442(p) is at least 8.
Original entry on oeis.org
5381, 52711, 648391, 2269733, 9737333, 17624813, 37139213, 50728129, 77557187, 131807699, 174440041, 259336153, 326851121, 368345293, 440817757, 563167303, 718064159, 751783477, 997525853, 1107276647, 1170710369, 1367161723
Offset: 1
Cf.
A078442,
A000040,
A006450,
A038580,
A049090,
A049203,
A049202,
A057849,
A057851,
A057847,
A058332,
A093047.
-
Nest[ Prime, Range[35], 8] (* Robert G. Wilson v, Mar 15 2004 *)
-
list(lim)=my(v=List(), q, r, s, t, u, vv, w); forprime(p=2, lim, if(isprime(q++) && isprime(r++) && isprime(s++) && isprime(t++) && isprime(u++) && isprime(vv++) && isprime(w++), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 19 2017
A057851
Primes p whose order of primeness A078442(p) is at least 9.
Original entry on oeis.org
52711, 648391, 9737333, 37139213, 174440041, 326851121, 718064159, 997525853, 1559861749, 2724711961, 3657500101, 5545806481, 7069067389, 8012791231, 9672485827, 12501968177, 16123689073, 16917026909, 22742734291
Offset: 1
Cf.
A078442,
A000040,
A006450,
A038580,
A049090,
A049203,
A049202,
A057849,
A057850,
A057847,
A058332,
A093047.
-
Nest[ Prime, Range[35], 9] (* Robert G. Wilson v, Mar 15 2004 *)
-
list(lim)=my(v=List(), q, r, s, t, u, vv, w, x); forprime(p=2, lim, if(isprime(q++) && isprime(r++) && isprime(s++) && isprime(t++) && isprime(u++) && isprime(vv++) && isprime(w++) && isprime(x++), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 19 2017
A058332
Primes p whose order of primeness A078442(p) is at least 11.
Original entry on oeis.org
9737333, 174440041, 3657500101, 16123689073, 88362852307, 175650481151, 414507281407, 592821132889, 963726515729, 1765037224331, 2428095424619, 3809491708961, 4952019383323, 5669795882633, 6947574946087, 9163611272327
Offset: 1
Cf.
A078442,
A000040,
A006450,
A038580,
A049090,
A049203,
A049202,
A057849,
A057850,
A057851,
A057847,
A093047.
A093047
Primes p whose order of primeness A078442(p) is at least 12.
Original entry on oeis.org
174440041, 3657500101, 88362852307, 414507281407, 2428095424619, 4952019383323, 12055296811267, 17461204521323, 28871271685163, 53982894593057, 75063692618249, 119543903707171, 156740126985437, 180252380737439, 222334565193649
Offset: 1
Cf.
A078442,
A000040,
A006450,
A038580,
A049090,
A049203,
A049202,
A057849,
A057850,
A057851,
A057847,
A058332,
A093047.
A102617
Primes p(n) such that n is a second-order nonprime number.
Original entry on oeis.org
2, 19, 29, 43, 47, 53, 71, 79, 89, 97, 103, 113, 131, 137, 149, 151, 163, 167, 173, 193, 199, 223, 227, 229, 233, 251, 257, 263, 271, 293, 307, 311, 317, 337, 347, 349, 359, 379, 383, 389, 397, 409, 421, 439, 443, 449, 457, 463, 479, 487, 491, 503, 523, 541
Offset: 1
Nonprime(4) = 8.
The 8th prime is 19, the second entry.
Let A = primes
A000040, B = nonprimes
A018252. The 2-level compounds are AA =
A006450, AB =
A007821, BA =
A078782, BB =
A102615. The 3-level compounds AAA, AAB, ..., BBB are
A038580,
A049078,
A270792,
A102617,
A270794,
A270796,
A102216.
-
For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - N. J. A. Sloane, Mar 30 2016
-
nonPrime[n_Integer] := FixedPoint[n + PrimePi[ # ] &, n]; Prime /@ nonPrime /@ nonPrime /@ Range[54] (* Robert G. Wilson v, Feb 04 2005 *)
-
\We perform nesting(s) with a loop. cips(n,m) = { local(x,y,z); for(x=1,n, z=x; for(y=1,m+1, z=composite(z); ); print1(prime(z)",") ) } composite(n) = \ The n-th composite number. 1 is defined as a composite number. { local(c,x); c=1; x=0; while(c <= n, x++; if(!isprime(x),c++); ); return(x) }
A270792
The prime/nonprime compound sequence ABA.
Original entry on oeis.org
7, 13, 23, 37, 61, 73, 101, 107, 139, 181, 197, 239, 269, 281, 313, 373, 419, 433, 467, 499, 521, 577, 613, 653, 719, 751, 761, 811, 823, 853, 977, 1013, 1051, 1069, 1163, 1187, 1237, 1289, 1307, 1373, 1439, 1453, 1549, 1559, 1583
Offset: 1
Let A = primes
A000040, B = nonprimes
A018252. The 2-level compounds are AA =
A006450, AB =
A007821, BA =
A078782, BB =
A102615. The 3-level compounds AAA, AAB, ..., BBB are
A038580,
A049078,
A270792,
A102617,
A270794,
A270796,
A102216.
A270794
The prime/nonprime compound sequence BAA.
Original entry on oeis.org
6, 9, 18, 26, 45, 57, 81, 91, 112, 143, 165, 203, 228, 244, 267, 303, 345, 354, 411, 437, 454, 495, 530, 564, 623, 668, 687, 714, 728, 749, 856, 893, 931, 959, 1032, 1054, 1104, 1158, 1185, 1233, 1268, 1298, 1372, 1392, 1425, 1445, 1539, 1672, 1698, 1714, 1742, 1773, 1802, 1886, 1914, 1966, 2031, 2050, 2104
Offset: 1
Let A = primes
A000040, B = nonprimes
A018252. The 2-level compounds are AA =
A006450, AB =
A007821, BA =
A078782, BB =
A102615. The 3-level compounds AAA, AAB, ..., BBB are
A038580,
A049078,
A270792,
A102617,
A270794,
A270796,
A102216.
A270796
The prime/nonprime compound sequence BBA.
Original entry on oeis.org
8, 10, 15, 20, 27, 32, 38, 40, 49, 58, 63, 72, 78, 82, 88, 99, 110, 114, 121, 125, 129, 140, 146, 155, 166, 172, 175, 183, 185, 189, 212, 217, 225, 230, 245, 248, 258, 265, 272, 279, 289, 292, 306, 309, 315, 319, 334, 355, 360, 362, 368, 375, 377, 393, 402, 408, 416, 420, 427, 435, 438, 452, 473, 478, 482, 486, 507
Offset: 1
Let A = primes
A000040, B = nonprimes
A018252. The 2-level compounds are AA =
A006450, AB =
A007821, BA =
A078782, BB =
A102615. The 3-level compounds AAA, AAB, ..., BBB are
A038580,
A049078,
A270792,
A102617,
A270794,
A270796,
A102216.
A340020
MM-numbers of labeled graphs with loops, without isolated vertices.
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 553, 559, 577, 607, 611, 631, 647, 653, 661, 667, 673, 677
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 161: {{1,1},{2,2}} 347: {{2,9}}
7: {{1,1}} 163: {{1,8}} 373: {{1,12}}
13: {{1,2}} 167: {{2,6}} 377: {{1,2},{1,3}}
23: {{2,2}} 199: {{1,9}} 389: {{4,5}}
29: {{1,3}} 203: {{1,1},{1,3}} 421: {{1,13}}
43: {{1,4}} 227: {{4,4}} 439: {{3,7}}
47: {{2,3}} 233: {{2,7}} 443: {{1,14}}
73: {{2,4}} 257: {{3,5}} 449: {{2,10}}
79: {{1,5}} 269: {{2,8}} 467: {{4,6}}
91: {{1,1},{1,2}} 271: {{1,10}} 487: {{2,11}}
97: {{3,3}} 293: {{1,11}} 491: {{1,15}}
101: {{1,6}} 299: {{1,2},{2,2}} 499: {{3,8}}
137: {{2,5}} 301: {{1,1},{1,4}} 511: {{1,1},{2,4}}
139: {{1,7}} 313: {{3,6}} 553: {{1,1},{1,5}}
149: {{3,4}} 329: {{1,1},{2,3}} 559: {{1,2},{1,4}}
The case with only one edge is
A106349.
The case covering an initial interval is
A320461.
The version allowing multiple edges is
A339112.
The half-loop version covering an initial interval is
A340018.
A006450 lists primes of prime index.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326754,
A326788.
-
Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeOmega[PrimePi[p]]!=2]&]
A320633
Composite numbers whose prime indices are also composite.
Original entry on oeis.org
49, 91, 133, 161, 169, 203, 247, 259, 299, 301, 329, 343, 361, 371, 377, 427, 437, 481, 497, 511, 529, 551, 553, 559, 611, 623, 637, 667, 679, 689, 703, 707, 721, 749, 791, 793, 817, 841, 851, 893, 917, 923, 931, 949, 959, 973, 989, 1007, 1027, 1043, 1057
Offset: 1
The sequence of terms begins:
49 = prime(4)^2
91 = prime(4)*prime(6)
133 = prime(4)*prime(8)
161 = prime(4)*prime(9)
169 = prime(6)^2
203 = prime(4)*prime(10)
247 = prime(6)*prime(8)
259 = prime(4)*prime(12)
299 = prime(6)*prime(9)
301 = prime(4)*prime(14)
329 = prime(4)*prime(15)
343 = prime(4)^3
361 = prime(8)^2
371 = prime(4)*prime(16)
377 = prime(6)*prime(10)
427 = prime(4)*prime(18)
437 = prime(8)*prime(9)
481 = prime(6)*prime(12)
497 = prime(4)*prime(20)
511 = prime(4)*prime(21)
529 = prime(9)^2
551 = prime(8)*prime(10)
553 = prime(4)*prime(22)
559 = prime(6)*prime(14)
611 = prime(6)*prime(15)
623 = prime(4)*prime(24)
637 = prime(4)^2*prime(6)
Cf.
A000040,
A006450,
A007821,
A018252,
A050370,
A056239,
A076610,
A112798,
A302242,
A302478,
A320533,
A320628,
A320629.
-
Select[Range[2,1000],And[OddQ[#],!PrimeQ[#],And@@Not/@PrimeQ/@PrimePi/@First/@FactorInteger[#]]&]
Comments