cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006450 Prime-indexed primes: primes with prime subscripts.

Original entry on oeis.org

3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, 1031, 1063, 1087, 1153, 1171, 1201, 1217, 1297, 1409, 1433, 1447, 1471
Offset: 1

Views

Author

Jeffrey Shallit, Nov 25 1975

Keywords

Comments

Subsequence of A175247 (primes (A000040) with noncomposite (A008578) subscripts), a(n) = A175247(n+1). - Jaroslav Krizek, Mar 13 2010
Primes p such that p and pi(p) are both primes. - Juri-Stepan Gerasimov, Jul 14 2011
Sum_{n>=1} 1/a(n) converges. In fact, Sum_{n>N} 1/a(n) < 1/log(N), by the integral test. - Jonathan Sondow, Jul 11 2012
The number of such primes not exceeding x > 0 is pi(pi(x)). I conjecture that the sequence a(n)^(1/n) (n = 1,2,3,...) is strictly decreasing. This is an analog of the Firoozbakht conjecture on primes. - Zhi-Wei Sun, Aug 17 2015
Limit_{n->infinity} a(n)/(n*(log(n))^2) = 1. Proof: By Cipolla's asymptotic formula, prime(n) ~ L(n) + R(n), where L(n)/n = log(n) + log(log(n)) - 1 and R(n)/n decreases logarithmically to 0. Hence, for large n, a(n) = prime(prime(n)) ~ L(L(n)+R(n)) + R(L(n)+R(n)) = n*(log(n))^2 + r(n), where r(n) grows as O(n*log(n)*log(log(n))). The rest of the proof is trivial. The convergence is very slow: for k = 1,2,3,4,5,6, sqrt(a(10^k)/10^k)/log(10^k) evaluates to 2.055, 1.844, 1.695, 1.611, 1.545, and 1.493, respectively. - Stanislav Sykora, Dec 09 2015

Examples

			a(5) = 31 because a(5) = p(p(5)) = p(11) = 31.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Primes for which A049076 > 1.
Cf. A185723 and A214296 for numbers and primes that are sums of distinct a(n); cf. A213356 and A185724 for those that are not.
Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270795, A270796, A102616.

Programs

  • Haskell
    a006450 = a000040 . a000040
    a006450_list = map a000040 a000040_list
    -- Reinhard Zumkeller, Jan 12 2013
    
  • Magma
    [ NthPrime(NthPrime(n)): n in [1..51] ]; // Jason Kimberley, Apr 02 2010
    
  • Maple
    seq(ithprime(ithprime(i)),i=1..50); # Uli Baum (Uli_Baum(AT)gmx.de), Sep 05 2007
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - N. J. A. Sloane, Mar 30 2016
  • Mathematica
    Table[ Prime[ Prime[ n ] ], {n, 100} ]
  • PARI
    i=0;forprime(p=2,1e4,if(isprime(i++),print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    a=vector(10^3,n,prime(prime(n))) \\ Stanislav Sykora, Dec 09 2015
    
  • Python
    from sympy import prime
    def a(n): return prime(prime(n))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Aug 11 2021
    
  • Python
    # much faster version for initial segment of sequence
    from sympy import nextprime, isprime
    def aupton(terms):
        alst, p, pi = [], 2, 1
        while len(alst) < terms:
            if isprime(pi): alst.append(p)
            p, pi = nextprime(p), pi+1
        return alst
    print(aupton(10000)) # Michael S. Branicky, Aug 11 2021

Formula

a(n) = prime(prime(n)) = A000040(A000040(n)). - Juri-Stepan Gerasimov, Sep 24 2009
a(n) > n*(log(n))^2, as prime(n) > n*log(n) by Rosser's theorem. - Jonathan Sondow, Jul 11 2012
a(n)/log(a(n)) ~ prime(n). - Thomas Ordowski, Mar 30 2015
Sum_{n>=1} 1/a(n) is in the interval (1.04299, 1.04365) (Bayless et al., 2013). - Amiram Eldar, Oct 15 2020

A038580 Primes with indices that are primes with prime indices.

Original entry on oeis.org

5, 11, 31, 59, 127, 179, 277, 331, 431, 599, 709, 919, 1063, 1153, 1297, 1523, 1787, 1847, 2221, 2381, 2477, 2749, 3001, 3259, 3637, 3943, 4091, 4273, 4397, 4549, 5381, 5623, 5869, 6113, 6661, 6823, 7193, 7607, 7841, 8221, 8527, 8719, 9319, 9461, 9739
Offset: 1

Views

Author

Keywords

Crossrefs

Primes p for which A049076(p) > 3.
Second differences give A245175.
Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270795, A270796, A102616.

Programs

  • Magma
    [NthPrime(NthPrime(NthPrime(n))): n in [1..50]]; // Vincenzo Librandi, Jul 17 2016
  • Maple
    a:= ithprime@@3;
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 14 2015
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - N. J. A. Sloane, Mar 30 2016
  • Mathematica
    Table[ Prime[ Prime[ Prime[ n ] ] ], {n, 1, 60} ]
    Nest[Prime, Range[45], 3] (* Robert G. Wilson v, Mar 15 2004 *)
  • PARI
    a(n) = prime(prime(prime(n))) \\ Charles R Greathouse IV, Apr 28 2015
    
  • PARI
    list(lim)=my(v=List(),q,r); forprime(p=2,lim, if(isprime(q++) && isprime(r++), listput(v,p))); Set(v) \\ Charles R Greathouse IV, Feb 14 2017
    

Formula

a(n) = prime(prime(prime(n))).
a(n) ~ n*log(n)^3. - Ilya Gutkovskiy, Jul 17 2016

A049090 Primes for which A049076 >= 4.

Original entry on oeis.org

11, 31, 127, 277, 709, 1063, 1787, 2221, 3001, 4397, 5381, 7193, 8527, 9319, 10631, 12763, 15299, 15823, 19577, 21179, 22093, 24859, 27457, 30133, 33967, 37217, 38833, 40819, 42043, 43651, 52711, 55351, 57943, 60647, 66851, 68639, 72727
Offset: 1

Views

Author

Keywords

Comments

Union of A049080, A049081, A058322, A058324, etc. - R. J. Mathar, Jul 07 2012

Crossrefs

Programs

  • Maple
    map(ithprime@@3, select(isprime, [$1..157])); # Peter Luschny, Feb 17 2014
  • Mathematica
    Nest[ Prime, Range[40], 4] (* Robert G. Wilson v, Mar 15 2004 *)
  • PARI
    list(lim)=my(v=List(),q,r,s); forprime(p=2,lim,if(isprime(q++)&&isprime(r++)&&isprime(s++),listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 16 2017

Formula

a(n) = A006450(A006450(n)). - James G. Merickel, Feb 14 2010
a(n) = A000040(A038580(n)). - R. J. Mathar, Jul 07 2012
a(n) ~ n (log n)^4. - Charles R Greathouse IV, Feb 16 2017

Extensions

Name corrected by Sean A. Irvine, Jul 18 2021

A049203 Primes for which A049076(p) >= 5.

Original entry on oeis.org

31, 127, 709, 1787, 5381, 8527, 15299, 19577, 27457, 42043, 52711, 72727, 87803, 96797, 112129, 137077, 167449, 173867, 219613, 239489, 250751, 285191, 318211, 352007, 401519, 443419, 464939, 490643, 506683, 527623, 648391, 683873, 718807
Offset: 1

Views

Author

Keywords

Comments

Union of A049081, A058322, A058324-A058328, A093046, etc. - R. J. Mathar, Jul 07 2012

Crossrefs

Programs

  • Maple
    map(ithprime@@4, select(isprime, [$1..137])); # Peter Luschny, Feb 17 2014
  • Mathematica
    Nest[ Prime, Range[35], 5] (* Robert G. Wilson v, Mar 15 2004 *)
  • PARI
    list(lim)=my(v=List(),q,r,s,t); forprime(p=2,lim, if(isprime(q++) && isprime(r++) && isprime(s++) && isprime(t++), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 16 2017

Formula

a(n) = A000040(A049090(n)). - R. J. Mathar, Jul 07 2012
a(n) ~ n (log n)^5. - Charles R Greathouse IV, Feb 16 2017

Extensions

More terms from Robert G. Wilson v, Nov 10 2000
Name corrected by Sean A. Irvine, Jul 21 2021

A049202 Primes p whose order of primeness A049076(p) is >= 6.

Original entry on oeis.org

127, 709, 5381, 15299, 52711, 87803, 167449, 219613, 318211, 506683, 648391, 919913, 1128889, 1254739, 1471343, 1828669, 2269733, 2364361, 3042161, 3338989, 3509299, 4030889, 4535189, 5054303, 5823667, 6478961, 6816631
Offset: 1

Views

Author

Keywords

Comments

Union of A058322, A058324-A058328, A093046 etc.

Crossrefs

Programs

  • Maple
    map(ithprime@@4,select(isprime, [$1..137])); # Peter Luschny, Feb 17 2014
  • Mathematica
    Nest[ Prime, Range[35], 6] (* Robert G. Wilson v, Mar 15 2004 *)
  • PARI
    list(lim)=my(v=List(), q, r, s, t, u); forprime(p=2, lim, if(isprime(q++) && isprime(r++) && isprime(s++) && isprime(t++) && isprime(u++), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 16 2017

Extensions

More terms from Robert G. Wilson v, Nov 10 2000
Name corrected by Sean A. Irvine, Jul 21 2021

A057847 Primes p whose order of primeness A078442(p) is at least 10.

Original entry on oeis.org

648391, 9737333, 174440041, 718064159, 3657500101, 7069067389, 16123689073, 22742734291, 36294260117, 64988430769, 88362852307, 136395369829, 175650481151, 200147986693, 243504973489, 318083817907, 414507281407
Offset: 1

Views

Author

Robert G. Wilson v, Nov 10 2000

Keywords

Crossrefs

Programs

Formula

a(n) = prime(A057851(n)). - Andrew Howroyd, Nov 17 2024

Extensions

Name clarified by Andrew Howroyd, Nov 17 2024

A057849 Primes p whose order of primeness A078442(p) is at least 7.

Original entry on oeis.org

709, 5381, 52711, 167449, 648391, 1128889, 2269733, 3042161, 4535189, 7474967, 9737333, 14161729, 17624813, 19734581, 23391799, 29499439, 37139213, 38790341, 50728129, 56011909, 59053067, 68425619, 77557187, 87019979, 101146501, 113256643, 119535373, 127065427
Offset: 1

Views

Author

Robert G. Wilson v, Nov 10 2000

Keywords

Crossrefs

Programs

  • Maple
    a:= ithprime@@7;
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 14 2015
  • Mathematica
    Nest[ Prime, Range[35], 7] (* Robert G. Wilson v, Mar 15 2004 *)
  • PARI
    list(lim)=my(v=List(), q, r, s, t, u, vv); forprime(p=2, lim, if(isprime(q++) && isprime(r++) && isprime(s++) && isprime(t++) && isprime(u++) && isprime(vv++), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 16 2017

Extensions

Name clarified by Andrew Howroyd, Nov 17 2024

A057850 Primes p whose order of primeness A078442(p) is at least 8.

Original entry on oeis.org

5381, 52711, 648391, 2269733, 9737333, 17624813, 37139213, 50728129, 77557187, 131807699, 174440041, 259336153, 326851121, 368345293, 440817757, 563167303, 718064159, 751783477, 997525853, 1107276647, 1170710369, 1367161723
Offset: 1

Views

Author

Robert G. Wilson v, Nov 10 2000

Keywords

Comments

Union of A058325-A058328, A093046 etc. - R. J. Mathar, Jul 07 2012

Crossrefs

Programs

  • Mathematica
    Nest[ Prime, Range[35], 8] (* Robert G. Wilson v, Mar 15 2004 *)
  • PARI
    list(lim)=my(v=List(), q, r, s, t, u, vv, w); forprime(p=2, lim, if(isprime(q++) && isprime(r++) && isprime(s++) && isprime(t++) && isprime(u++) && isprime(vv++) && isprime(w++), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 19 2017

Formula

a(n) = A049090(A049090(n)). - James G. Merickel, Feb 14 2010
a(n) = A000040(A057849(n)). - R. J. Mathar, Jul 07 2012

Extensions

Name clarified by Andrew Howroyd, Nov 17 2024

A058332 Primes p whose order of primeness A078442(p) is at least 11.

Original entry on oeis.org

9737333, 174440041, 3657500101, 16123689073, 88362852307, 175650481151, 414507281407, 592821132889, 963726515729, 1765037224331, 2428095424619, 3809491708961, 4952019383323, 5669795882633, 6947574946087, 9163611272327
Offset: 1

Views

Author

Robert G. Wilson v, Dec 12 2000

Keywords

Crossrefs

Programs

Formula

a(n) = prime(A057847(n)). - Andrew Howroyd, Nov 17 2024

Extensions

Name clarified by Andrew Howroyd, Nov 17 2024

A093047 Primes p whose order of primeness A078442(p) is at least 12.

Original entry on oeis.org

174440041, 3657500101, 88362852307, 414507281407, 2428095424619, 4952019383323, 12055296811267, 17461204521323, 28871271685163, 53982894593057, 75063692618249, 119543903707171, 156740126985437, 180252380737439, 222334565193649
Offset: 1

Views

Author

Robert G. Wilson v, Mar 15 2000

Keywords

Comments

Primes p whose primeness is > 12: 3657500101, 88362852307, 2428095424619, 12055296811267, 75063692618249, 156740126985437, ..., . - Robert G. Wilson v, Mar 15 2000

Crossrefs

Programs

Formula

a(n) = A058332(prime(n)). - Andrew Howroyd, Nov 17 2024

Extensions

Name clarified by Andrew Howroyd, Nov 17 2024
Showing 1-10 of 11 results. Next