cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 270 results. Next

A076240 Remainder when 2nd order prime pp(n) = A006450(n) is divided by n-th prime = A000040(n).

Original entry on oeis.org

1, 2, 1, 3, 9, 2, 8, 10, 14, 22, 3, 9, 15, 19, 23, 29, 41, 39, 63, 69, 2, 6, 16, 16, 24, 42, 48, 52, 54, 52, 74, 84, 88, 102, 114, 122, 134, 152, 156, 166, 168, 1, 7, 13, 19, 23, 31, 71, 71, 73, 73, 65, 77, 91, 79, 91, 109, 115, 125, 137, 149, 155, 185, 197, 203, 197, 235
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Examples

			a(4) = 3 since prime(prime(4)) (mod prime(4)) = prime(7) (mod 7) = 17 (mod 7) = 3. - _Michael De Vlieger_, Mar 25 2017
		

Crossrefs

Programs

  • Maple
    a:= n-> (p-> irem(ithprime(p), p))(ithprime(n)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    Table[Mod @@ Map[Nest[Prime, n, #] &, {2, 1}], {n, 65}] (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    a(n) = prime(prime(n)) % prime(n); \\ Michel Marcus, Mar 25 2017

Formula

a(n) = prime^2(n) mod prime(n) = A006450(n) mod A000040(n).

A096479 "Secondary twin primes": a(n) = A006450(A096477(n)).

Original entry on oeis.org

3, 5, 11, 17, 41, 59, 179, 191, 431, 461, 599, 617, 1031, 1787, 2027, 2081, 2381, 2549, 3299, 4091, 4217, 4421, 4517, 4787, 5021, 5441, 5651, 8999, 9041, 9461, 10457, 13217, 13709, 13757, 14591, 14867, 15641, 16061, 16451, 16901, 17189, 17291
Offset: 1

Views

Author

Labos Elemer, Jun 23 2004

Keywords

Examples

			a(10) = 461 since prime(10) = 89 and prime(89 + 1) - prime(89) = 463 - 461 = 2.
		

Crossrefs

Programs

  • Mathematica
    Prime[Prime[Flatten[Position[Table[Prime[Prime[n]+1] -Prime[Prime[n]], {n, 1, 1000}], 2]]]]

A076241 Remainder when 2nd order prime pp(n)=A006450(n) is divided by n.

Original entry on oeis.org

0, 1, 2, 1, 1, 5, 3, 3, 2, 9, 6, 1, 10, 9, 1, 1, 5, 13, 8, 13, 10, 5, 17, 5, 9, 1, 23, 27, 19, 17, 27, 3, 14, 15, 19, 13, 31, 17, 16, 31, 38, 37, 35, 27, 31, 21, 28, 17, 12, 47, 43, 43, 39, 31, 26, 45, 13, 1, 17, 23, 17, 53, 11, 15, 1, 53, 10, 25, 64, 41, 38, 41, 68, 33, 59, 63, 65
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(NthPrime(n)) mod(n): n in [1..100]]; // Vincenzo Librandi, Jul 10 2017
  • Mathematica
    Table[Mod[Prime[Prime[n]], n], {n, 100}] (* Vincenzo Librandi, Jul 10 2017 *)
  • PARI
    a(n) = prime(prime(n)) % n; \\ Michel Marcus, Jul 09 2017
    

Formula

a(n) = A006450(n) mod n.

A104131 a(n) = pip(n)^pip(n) where pip(n) is the n-th prime-indexed prime (see A006450).

Original entry on oeis.org

27, 3125, 285311670611, 827240261886336764177, 17069174130723235958610643029059314756044734431, 1330877630632711998713399240963346255985889330161650994325137953641
Offset: 1

Views

Author

Cino Hilliard, Mar 06 2005

Keywords

Programs

  • Mathematica
    #^#&/@Prime[Prime[Range[7]]] (* Harvey P. Dale, Jun 03 2023 *)
  • PARI
    piptopip(n) = { local(x,y); for(x=1,n, y=pip(x)^pip(x); print1(y","); ) } pip() = { return(prime(prime(n))) }

A092769 Squares of A006450: a(n) = prime(prime(n))^2.

Original entry on oeis.org

9, 25, 121, 289, 961, 1681, 3481, 4489, 6889, 11881, 16129, 24649, 32041, 36481, 44521, 58081, 76729, 80089, 109561, 124609, 134689, 160801, 185761, 212521, 259081, 299209, 316969, 344569, 358801, 380689, 502681, 546121, 597529, 635209
Offset: 1

Views

Author

Jorge Coveiro, Apr 14 2004

Keywords

Crossrefs

Cf. A006450.

Programs

A092770 Cubes of A006450: a(n) = prime(prime(n))^3.

Original entry on oeis.org

27, 125, 1331, 4913, 29791, 68921, 205379, 300763, 571787, 1295029, 2048383, 3869893, 5735339, 6967871, 9393931, 13997521, 21253933, 22665187, 36264691, 43986977, 49430863, 64481201, 80062991, 97972181, 131872229, 163667323
Offset: 1

Views

Author

Jorge Coveiro, Apr 14 2004

Keywords

Crossrefs

Cf. A006450.

Programs

A245174 Second differences of A006450.

Original entry on oeis.org

4, 0, 8, -4, 8, -10, 8, 10, -8, 12, -8, -10, 8, 10, 6, -30, 42, -26, -8, 20, -4, 0, 18, -10, -22, 8, -12, 6, 74, -62, 4, -10, 38, -44, 24, 6, -24, 16, -8, -8, 42, -48, 12, -14, 64, 32, -88, -10, 10
Offset: 1

Views

Author

N. J. A. Sloane, Jul 17 2014

Keywords

Crossrefs

Cf. A006450.

Programs

  • Mathematica
    Differences[Table[Prime[Prime[n]], {n, 1, 100}], 2] (* Jean-François Alcover, Oct 09 2018 *)
  • PARI
    f(n) = prime(prime(n))
    a(n) = f(n+2)-2*f(n+1)+f(n)
    vector(50, n, a(n)) \\ Jens Kruse Andersen, Jul 18 2014

A271368 Number of ways to write n as the sum of distinct super-primes (A006450).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 0, 1, 3, 0, 1, 2, 0, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 0, 3, 2, 0, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 0, 2, 3, 1, 4
Offset: 1

Views

Author

Felix Fröhlich, Apr 05 2016

Keywords

Comments

a(n) > 0 for n > 96 (cf. Dressler, Parker, 1975).

Examples

			There are two ways to write 31 as the sum of distinct super-primes: 31 (a single summand, as 31 is itself a super-prime) and 17 + 11 + 3 (three summands), so a(31) = 2.
		

Crossrefs

Programs

  • PARI
    isokp(pt) = {for (k=1, #pt, if (! isprime(pt[k]) || !isprime(primepi(pt[k])), return (0));); #pt == #Set(pt);}
    a(n) = {if (n < 3, return (0)); nb = 0; forpart(pt = n, if (isokp(pt), nb++), [3, n]); nb;} \\ Michel Marcus, Apr 06 2016

Formula

G.f.: prod(k>=1, 1 + x^A006450(k) ). [Joerg Arndt, Apr 06 2016]

Extensions

More terms from Michel Marcus, Apr 06 2016

A265124 Integers n such that A002110(n) + A006450(n) is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 12, 45, 64, 121, 144, 238, 261, 415, 2296, 2847
Offset: 1

Views

Author

Altug Alkan, Dec 02 2015

Keywords

Comments

Corresponding primes are 5, 11, 41, 227, 2341 and 30071.
1, 4, 64, 121, 144 are squares for initial terms of sequence. Are there any other squares in this sequence?

Examples

			a(1) = 1 because 2 + 3 = 5 is prime.
a(2) = 2 because 2*3 + 5 = 11 is prime.
a(3) = 3 because 2*3*5 + 11 = 41 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 500, PrimeQ[Product[Prime@ k, {k, #}] + Prime@ Prime@ #] &] (* Michael De Vlieger, Dec 02 2015 *)
  • PARI
    lista(nn) = {s = 1; for(k=1, nn, s *= prime(k); if(ispseudoprime(s + prime(prime(k))), print1(k, ", ")); ); }

A007097 Primeth recurrence: a(n+1) = a(n)-th prime.

Original entry on oeis.org

1, 2, 3, 5, 11, 31, 127, 709, 5381, 52711, 648391, 9737333, 174440041, 3657500101, 88362852307, 2428095424619, 75063692618249, 2586559730396077, 98552043847093519, 4123221751654370051, 188272405179937051081, 9332039515881088707361, 499720579610303128776791, 28785866289100396890228041
Offset: 0

Views

Author

Keywords

Comments

A007097(n) = Min {k : A109301(k) = n} = the first k whose rote height is n, the level set leader or minimum inverse function corresponding to A109301. - Jon Awbrey, Jun 26 2005
Lubomir Alexandrov informs me that he studied this sequence in his 1965 notebook. - N. J. A. Sloane, May 23 2008
a(n) is the Matula-Goebel number of the rooted path tree on n+1 vertices. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. - Emeric Deutsch, Feb 18 2012
Conjecture: log(a(1))*log(a(2))*...*log(a(n)) ~ a(n). - Thomas Ordowski, Mar 26 2015

References

  • Lubomir Alexandrov, unpublished notes, circa 1960.
  • L. Longeri, Towards understanding nature and the aesthetics of prime numbers, https://www.longeri.org/prime/nature.html [Broken link, but leave the URL here for historical reasons]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 1 of array A114537.
Left edge of tree A227413, right edge of A246378.
Cf. A078442, A109082 (left inverses).
Subsequence of A245823.

Programs

  • GAP
    P:=Filtered([1..60000],IsPrime);;
    a:=[1];; for n in [2..10] do a[n]:=P[a[n-1]]; od; a; # Muniru A Asiru, Dec 22 2018
  • Haskell
    a007097 n = a007097_list !! n
    a007097_list = iterate a000040 1  -- Reinhard Zumkeller, Jul 14 2013
    
  • Maple
    seq((ithprime@@n)(1),n=0..10); # Peter Luschny, Oct 16 2012
  • Mathematica
    NestList[Prime@# &, 1, 16] (* Robert G. Wilson v, May 30 2006 *)
  • PARI
    print1(p=1);until(,print1(","p=prime(p)))  \\ M. F. Hasler, Oct 09 2011
    

Formula

A049084(a(n+1)) = a(n). - Reinhard Zumkeller, Jul 14 2013
a(n)/a(n-1) ~ log(a(n)) ~ prime(n). - Thomas Ordowski, Mar 26 2015
a(n) = prime^{[n]}(1), with the prime function prime(k) = A000040(k), with a(0) = 1. See the name and the programs. - Wolfdieter Lang, Apr 03 2018
Sum_{n>=1} 1/a(n) = A292667. - Amiram Eldar, Oct 15 2020

Extensions

a(15) corrected and a(16)-a(17) added by Paul Zimmermann
a(18)-a(19) found by David Baugh using a program by Xavier Gourdon and Andrey V. Kulsha, Oct 25 2007
a(20)-a(21) found by Andrey V. Kulsha using a program by Xavier Gourdon, Oct 02 2011
a(22) from Henri Lifchitz, Oct 14 2014
a(23) from David Baugh using Kim Walisch's primecount, May 16 2016
Showing 1-10 of 270 results. Next