cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A263101 a(n) = F(F(n)) mod F(n), where F = Fibonacci = A000045.

Original entry on oeis.org

0, 0, 1, 2, 0, 5, 12, 5, 33, 5, 1, 0, 232, 233, 55, 5, 1596, 2563, 1, 5, 987, 10946, 28656, 0, 0, 75025, 189653, 89, 1, 6765, 1, 5, 6765, 1, 9227460, 0, 24157816, 1, 63245985, 5, 1, 267914275, 433494436, 4181, 1134896405, 1, 2971215072, 0, 7778741816, 75025
Offset: 1

Views

Author

Alois P. Heinz, Oct 09 2015

Keywords

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, F(n)$2)[1, 2]:
    seq(a(n), n=1..50);
  • Mathematica
    F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
    p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
    a[n_] := p[{{0, 1}, {1, 1}}, F[n], F[n]][[1, 2]];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)
  • PARI
    alist(nn)= my(f=fibonacci); [ f(f(n))%f(n) |n<-[1..nn] ]; \\ Ruud H.G. van Tol, Dec 13 2024

Formula

a(n) = A007570(n) mod A000045(n).

A076243 Remainder when 3rd-order prime ppp(n) = A038580(n) is divided by n.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 4, 3, 8, 9, 5, 7, 10, 5, 7, 3, 2, 11, 17, 1, 20, 21, 11, 19, 12, 17, 14, 17, 18, 19, 18, 23, 28, 27, 11, 19, 15, 7, 2, 21, 40, 25, 31, 1, 19, 15, 9, 31, 46, 47, 10, 15, 43, 23, 14, 9, 17, 19, 18, 41, 24, 27, 50, 3, 14, 29, 13, 3, 4, 39, 21, 1, 47, 19, 31, 13, 6, 17
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    MapIndexed[Mod[#1, First@ #2] &, Nest[Prime, Range@ 79, 3]] (* Michael De Vlieger, Jul 22 2017 *)

Formula

a(n) = ppp(n) mod n = A038580(n) mod n.

A076241 Remainder when 2nd order prime pp(n)=A006450(n) is divided by n.

Original entry on oeis.org

0, 1, 2, 1, 1, 5, 3, 3, 2, 9, 6, 1, 10, 9, 1, 1, 5, 13, 8, 13, 10, 5, 17, 5, 9, 1, 23, 27, 19, 17, 27, 3, 14, 15, 19, 13, 31, 17, 16, 31, 38, 37, 35, 27, 31, 21, 28, 17, 12, 47, 43, 43, 39, 31, 26, 45, 13, 1, 17, 23, 17, 53, 11, 15, 1, 53, 10, 25, 64, 41, 38, 41, 68, 33, 59, 63, 65
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(NthPrime(n)) mod(n): n in [1..100]]; // Vincenzo Librandi, Jul 10 2017
  • Mathematica
    Table[Mod[Prime[Prime[n]], n], {n, 100}] (* Vincenzo Librandi, Jul 10 2017 *)
  • PARI
    a(n) = prime(prime(n)) % n; \\ Michel Marcus, Jul 09 2017
    

Formula

a(n) = A006450(n) mod n.

A076242 Remainder when 3rd order prime A038580(n) is divided by n-th prime=A000040(n).

Original entry on oeis.org

1, 2, 1, 3, 6, 10, 5, 8, 17, 19, 27, 31, 38, 35, 28, 39, 17, 17, 10, 38, 68, 63, 13, 55, 48, 4, 74, 100, 37, 29, 47, 121, 115, 136, 105, 28, 128, 109, 159, 90, 114, 31, 151, 4, 86, 108, 81, 147, 149, 189, 185, 119, 231, 166, 88, 238, 197, 233, 64, 186, 258, 111, 128, 260
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[Prime[Prime[Prime[n]]],Prime[n]],{n,70}] (* Harvey P. Dale, Sep 28 2013 *)

Formula

a(n) = Mod[A038580(n), A000040(n)]

A318660 Remainder when A064988(n) is divided by n.

Original entry on oeis.org

0, 1, 2, 1, 1, 3, 3, 3, 7, 3, 9, 9, 2, 9, 10, 1, 8, 3, 10, 19, 1, 5, 14, 15, 21, 19, 17, 13, 22, 15, 3, 19, 23, 7, 12, 9, 9, 11, 10, 17, 15, 3, 19, 15, 5, 19, 23, 21, 44, 13, 40, 5, 29, 51, 11, 11, 50, 37, 41, 15, 39, 9, 47, 25, 61, 3, 63, 55, 1, 1, 69, 27, 2, 27, 5, 71, 65, 69, 6, 11, 58, 45, 16, 9, 54, 57, 23, 45, 16, 15, 60, 11, 77, 69
Offset: 1

Views

Author

Altug Alkan and Antti Karttunen, Sep 08 2018

Keywords

Comments

Inspired by A064988 and a 'minimum' version of it (A318871).
a(n) = 0 only for n = 1. Numbers n such that a(n) = 1 are 2, 4, 5, 16, 21, 69, 70, 181, 265, 370, 1043, 3760, 4531, ...

Examples

			a(6) = prime(2)*prime(3) mod 6 = 15 mod 6 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[If[n == 1, 1, Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> Prime[p]^e]], n], {n, 94}] (* Michael De Vlieger, Sep 10 2018 *)
  • PARI
    A318660(n) = { my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]); ); (factorback(f)%n); }; \\ After code in A064988.

Formula

a(n) = A064988(n) mod n.
a(A000040(n)) = A076240(n).
Showing 1-5 of 5 results.