cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A138489 Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 5.

Original entry on oeis.org

5, 15, 1511, 3115, 152113, 13311215, 15411223, 1322311415, 1541142322, 3213243115, 1531331422, 2214313315, 1531331422, 2214313315, 1531331422, 2214313315, 1531331422, 2214313315, 1531331422, 2214313315, 1531331422
Offset: 0

Views

Author

Keywords

Comments

After a while sequence has period 2 -> {1531331422,2214313315}

Examples

			To get the term after 152113, we say: one 3's, three 1's, one 2's, one 5's, so 13311215
		

Crossrefs

A138490 Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 6.

Original entry on oeis.org

6, 16, 1611, 3116, 162113, 13311216, 16411223, 1322311416, 1641142322, 3213243116, 1631331422, 2214313316, 1631331422, 2214313316, 1631331422, 2214313316, 1631331422, 2214313316, 1631331422, 2214313316, 1631331422
Offset: 0

Views

Author

Keywords

Comments

After a while sequence has period 2 -> {1631331422,2214313316}

Examples

			To get the term after 162113, we say: one 3's, three 1's, one 2's, one 6's, so 13311216
		

Crossrefs

A138491 Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 7.

Original entry on oeis.org

7, 17, 1711, 3117, 172113, 13311217, 17411223, 1322311417, 1741142322, 3213243117, 1731331422, 2214313317, 1731331422, 2214313317, 1731331422, 2214313317, 1731331422, 2214313317, 1731331422, 2214313317, 1731331422
Offset: 0

Views

Author

Keywords

Comments

After a while sequence has period 2 -> {1731331422,2214313317}

Examples

			To get the term after 172113, we say: one 3's, three 1's, one 2's, one 7's, so 13311217
		

Crossrefs

A138492 Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 8.

Original entry on oeis.org

8, 18, 1811, 3118, 182113, 13311218, 18411223, 1322311418, 1841142322, 3213243118, 1831331422, 2214313318, 1831331422, 2214313318, 1831331422, 2214313318, 1831331422, 2214313318, 1831331422, 2214313318, 1831331422
Offset: 0

Views

Author

Keywords

Comments

After a while sequence has period 2 -> {1831331422,2214313318}

Examples

			To get the term after 182113, we say: one 3's, three 1's, one 2's, one 8's, so 13311218
		

Crossrefs

A363054 Look and say sequence: describe the previous term (method A, starting with 20).

Original entry on oeis.org

20, 1210, 11121110, 31123110, 132112132110, 11131221121113122110, 311311222112311311222110, 1321132132211213211321322110, 11131221131211132221121113122113121113222110, 3113112221131112311332211231131122211311123113322110
Offset: 1

Views

Author

Julia Zimmerman, May 15 2023

Keywords

Examples

			The term after 1210 is given by saying "I see one 1, one 2, one 1, and one 0", and then writing down the digits as 11-12-11-10, yielding 11121110.
		

Crossrefs

Programs

  • Mathematica
    NestList[FromDigits@ Flatten@ Map[Reverse@ Tally[#][[1]] &, Split@ IntegerDigits[#] ] &, 20, 12] (* Michael De Vlieger, Jul 05 2023 *)
  • Python
    from itertools import count, groupby, islice
    def LS(n): return int(''.join(str(len(list(g)))+k for k, g in groupby(str(n))))
    def agen(an=20): yield an; yield from (an:=LS(an) for n in count(1))
    print(list(islice(agen(), 10))) # Michael S. Branicky, May 15 2023

A265849 First differences of A006751.

Original entry on oeis.org

10, 1100, 2000, 129000, 1112990000, 310198100000, 12900010100000, 1113122099909791900000, 31130009089198002000100000, 132082082098921801009009900000, 11131221131211000108018890978199979090100000, 31131122211299991892189900998999891000999919009909900000
Offset: 1

Views

Author

Altug Alkan, Dec 16 2015

Keywords

Comments

Also first differences of A006715, A001140, A001141, A001143, A001145, A001151, A001154. - Michel Marcus, Dec 16 2015
Note that A005150 has really different first differences characteristic because of its initial term that is 1.

Examples

			a(1) = A006751(2) - A006751(1) = 12 - 2 = 10.
a(2) = A006751(3) - A006751(2) = 1112 - 12 = 1100.
		

Crossrefs

Programs

  • Mathematica
    f[n_, d_: 1] := NestList[Flatten[Reverse /@ Map[Function[k, Through[{First, Length}@ k]], Split@ #]] &, {d}, n - 1]; Differences@ Array[FromDigits@ f[#, 2][[#]] &, {13}] (* Michael De Vlieger, Jan 03 2016, after Zerinvary Lajos at A006751 *)
  • PARI
    dpt(n) = {vd = []; d = digits(n); nbd = 0; old = -1; for (k=1, #d, if (d[k] == old, nbd ++, if (old != -1, vd = concat(vd, nbd); vd = concat(vd, old);); nbd = 1;); old = d[k];); vd = concat(vd, nbd); vd = concat(vd, old); subst(Pol(vd), x, 10);}
    lista(nn, x=2) = {v = vector(nn); v[1] = x; for (n=2, nn, nx = dpt(x); v[n] = nx; x = nx;); vector(nn-1, n, v[n+1] - v[n]);} \\ 2nd param x can any value between 2 and 9 \\ Michel Marcus, Dec 16 2015

Formula

a(n) = A006751(n+1) - A006751(n).
a(n) mod 10^5 = 0, for n > 5.
a(2*n+2) - a(2*n) mod 10^6 = 0, for n > 3.
a(2*n+1) - a(2*n-1) mod 10^7 = 0, for n > 3.
Previous Showing 21-26 of 26 results.