cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A343002 Discriminants with exactly 2 associated cyclic cubic fields.

Original entry on oeis.org

3969, 8281, 13689, 17689, 29241, 47089, 61009, 67081, 77841, 90601, 110889, 149769, 162409, 182329, 219961, 231361, 261121, 301401, 305809, 312481, 346921, 363609, 431649, 461041, 494209, 505521, 519841, 582169, 628849, 667489, 758641, 762129, 790321, 859329, 900601, 946729, 962361
Offset: 1

Views

Author

Jianing Song, Apr 02 2021

Keywords

Comments

A cubic field is cyclic if and only if its discriminant is a square. Hence all terms are squares.
Numbers of the form k^2 where A160498(k) = 4.
Numbers of the form k^2 where k is of the form (i) 9p, where p is a prime congruent to 1 modulo 3; (ii) pq, where p, q are distinct primes congruent to 1 modulo 3.
Products of two nonequal terms in A343022.
In general, there are exactly 2^(t-1) (cyclic) cubic fields with discriminant k^2 if and only if k is of the form (p_1)*(p_2)*...*(p_t) or 9*(p_1)*(p_2)*...*(p_{t-1}) with distinct primes p_i == 1 (mod 3), See A343000 for more detailed information.

Examples

			3969 = 63^2 is a term since it is the discriminant of the 2 cyclic cubic fields Q[x]/(x^3 - 21x - 28) and Q[x]/(x^3 - 21x - 35).
8281 = 91^2 is a term since it is the discriminant of the 2 cyclic cubic fields Q[x]/(x^3 - x^2 - 30x + 64) and Q[x]/(x^3 - x^2 - 30x - 27).
		

Crossrefs

Discriminants and their square roots of cyclic cubic fields:
At least 1 associated cyclic cubic field: A343000, A343001.
Exactly 1 associated cyclic cubic field: A343022, A002476 U {9}.
At least 2 associated cyclic cubic fields: A343024, A343025.
Exactly 2 associated cyclic cubic fields: this sequence, A343003.

Programs

  • PARI
    isA343002(n) = if(omega(n)==2, if(n==3969, 1, my(L=factor(n)); L[2,1]%3==1 && L[2,2]==2 && ((L[1,1]%3==1 && L[1,2]==2) || L[1,1]^L[1,2] == 81)), 0)

Formula

a(n) = A343003(n)^2.

A343003 Numbers k such that there are exactly 2 cyclic cubic fields with discriminant k^2.

Original entry on oeis.org

63, 91, 117, 133, 171, 217, 247, 259, 279, 301, 333, 387, 403, 427, 469, 481, 511, 549, 553, 559, 589, 603, 657, 679, 703, 711, 721, 763, 793, 817, 871, 873, 889, 927, 949, 973, 981, 1027, 1057, 1099, 1141, 1143, 1147, 1159, 1251, 1261, 1267, 1273, 1333
Offset: 1

Views

Author

Jianing Song, Apr 02 2021

Keywords

Comments

It makes no difference if the word "cyclic" is omitted from the title because a cubic field is cyclic if and only if its discriminant is a square.
Numbers k such that A160498(k) = 4.
Numbers of the form (i) 9p, where p is a prime congruent to 1 modulo 3; (ii) pq, where p, q are distinct primes congruent to 1 modulo 3.
In general, there are exactly 2^(t-1) (cyclic) cubic fields with discriminant k^2 if and only if k is of the form (p_1)*(p_2)*...*(p_t) or 9*(p_1)*(p_2)*...*(p_{t-1}) with distinct primes p_i == 1 (mod 3), See A343000 for more detailed information.

Examples

			63 is a term since 63^2 = 3969 is the discriminant of the 2 cyclic cubic fields Q[x]/(x^3 - 21x - 28) and Q[x]/(x^3 - 21x - 35).
91 is a term since 91^2 = 8281 is the discriminant of the 2 cyclic cubic fields Q[x]/(x^3 - x^2 - 30x + 64) and Q[x]/(x^3 - x^2 - 30x - 27).
		

Crossrefs

Discriminants and their square roots of cyclic cubic fields:
At least 1 associated cyclic cubic field: A343000, A343001.
Exactly 1 associated cyclic cubic field: A343022, A002476 U {9}.
At least 2 associated cyclic cubic fields: A343024, A343025.
Exactly 2 associated cyclic cubic fields: A343002, this sequence.

Programs

  • PARI
    isA343003(n) = if(omega(n)==2, if(n==63, 1, my(L=factor(n)); L[2,1]%3==1 && L[2,2]==1 && ((L[1,1]%3==1 && L[1,2]==1) || L[1,1]^L[1,2] == 9)), 0)

Formula

a(n) = sqrt(A343002(n)).

A343024 Discriminants with at least 2 associated cyclic cubic fields.

Original entry on oeis.org

3969, 8281, 13689, 17689, 29241, 47089, 61009, 67081, 77841, 90601, 110889, 149769, 162409, 182329, 219961, 231361, 261121, 301401, 305809, 312481, 346921, 363609, 431649, 461041, 494209, 505521, 519841, 582169, 628849, 667489, 670761, 758641, 762129, 790321, 859329, 900601, 946729, 962361
Offset: 1

Views

Author

Jianing Song, Apr 02 2021

Keywords

Comments

A cubic field is cyclic if and only if its discriminant is a square. Hence all terms are squares.
Numbers of the form k^2 where A160498(k) >= 4.
Terms in A343000 that are not 81 or a square of a prime.
Different from A343002 since a(31) = 819^2 = (7*9*13)^2.
In general, there are exactly 2^(t-1) (cyclic) cubic fields with discriminant k^2 if and only if k is of the form (p_1)*(p_2)*...*(p_t) or 9*(p_1)*(p_2)*...*(p_{t-1}) with distinct primes p_i == 1 (mod 3), See A343000 for more detailed information.

Examples

			8281 = 91^2 is a term since it is the discriminant of the 2 cyclic cubic fields Q[x]/(x^3 - x^2 - 30x + 64) and Q[x]/(x^3 - x^2 - 30x - 27).
670761 = 819^2 is a term since it is the discriminant of the 4 cyclic cubic fields Q[x]/(x^3 - 273x - 91), Q[x]/(x^3 - 273x - 728), Q[x]/(x^3 - 273x - 1547) and Q[x]/(x^3 - 273x - 1729).
		

Crossrefs

Discriminants and their square roots of cyclic cubic fields:
At least 1 associated cyclic cubic field: A343000, A343001.
Exactly 1 associated cyclic cubic field: A343022, A002476 U {9}.
At least 2 associated cyclic cubic fields: this sequence, A343025.
Exactly 2 associated cyclic cubic fields: A343002, A343003.

Programs

  • PARI
    isA343024(n) = if(issquare(n), my(k=sqrtint(n), L=factor(k), w=omega(k)); if(w<2, return(0)); for(i=1, w, if(!((L[i, 1]%3==1 && L[i, 2]==1) || L[i, 1]^L[i, 2] == 9), return(0))); 1)

Formula

a(n) = A343025(n)^2.

A343025 Numbers k such that there are at least 2 cyclic cubic fields with discriminant k^2.

Original entry on oeis.org

63, 91, 117, 133, 171, 217, 247, 259, 279, 301, 333, 387, 403, 427, 469, 481, 511, 549, 553, 559, 589, 603, 657, 679, 703, 711, 721, 763, 793, 817, 819, 871, 873, 889, 927, 949, 973, 981, 1027, 1057, 1099, 1141, 1143, 1147, 1159, 1197, 1251, 1261, 1267
Offset: 1

Views

Author

Jianing Song, Apr 02 2021

Keywords

Comments

It makes no difference if the word "cyclic" is omitted from the title because a cubic field is cyclic if and only if its discriminant is a square.
Numbers k such that A160498(k) >= 4.
Terms in A343001 that are not 9 or a prime.
Different from A343002 since a(31) = 819 = 7*9*13.
In general, there are exactly 2^(t-1) (cyclic) cubic fields with discriminant k^2 if and only if k is of the form (p_1)*(p_2)*...*(p_t) or 9*(p_1)*(p_2)*...*(p_{t-1}) with distinct primes p_i == 1 (mod 3); see A343000 for more detailed information.

Examples

			63 is a term since 63^2 = 3969 is the discriminant of the 2 cyclic cubic fields Q[x]/(x^3 - 21x - 28) and Q[x]/(x^3 - 21x - 35).
819 is a term since 819^2 = 670761 is the discriminant of the 4 cyclic cubic fields Q[x]/(x^3 - 273x - 91), Q[x]/(x^3 - 273x - 728), Q[x]/(x^3 - 273x - 1547) and Q[x]/(x^3 - 273x - 1729).
		

Crossrefs

Discriminants and their square roots of cyclic cubic fields:
At least 1 associated cyclic cubic field: A343000, A343001.
Exactly 1 associated cyclic cubic field: A343022, A002476 U {9}.
At least 2 associated cyclic cubic fields: A343024, this sequence.
Exactly 2 associated cyclic cubic fields: A343002, A343003.

Programs

  • PARI
    isA343025(n) = my(L=factor(n), w=omega(n)); if(w<2, return(0)); for(i=1, w, if(!((L[i, 1]%3==1 && L[i, 2]==1) || L[i, 1]^L[i, 2] == 9), return(0))); 1

Formula

a(n) = sqrt(A343024(n)).

A023679 Discriminants of complex cubic fields (negated).

Original entry on oeis.org

23, 31, 44, 59, 76, 83, 87, 104, 107, 108, 116, 135, 139, 140, 152, 172, 175, 199, 200, 204, 211, 212, 216, 231, 239, 243, 244, 247, 255, 268, 283, 300, 307, 324, 327, 331, 335, 339, 351, 356, 364, 367, 379, 411, 419, 424, 431, 436, 439, 440, 451, 459, 460, 472, 484, 491, 492, 499, 503
Offset: 1

Views

Author

Keywords

Examples

			The field Q[x]/(x^3 - x^2 + 1) is the complex cubic field with the smallest absolute discriminant of 23. - _Robin Visser_, Mar 27 2025
		

References

  • M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, p. 437.

Crossrefs

Extensions

More terms added by Robin Visser, Mar 27 2025, taken from the database of John Jones and David Roberts.

A278790 Number of real cubic fields with discriminant <= 10^n.

Original entry on oeis.org

0, 2, 27, 382, 4804, 54600, 592922, 6248290, 64659361, 661448081, 6715824025
Offset: 1

Views

Author

Keywords

Comments

Belabas invented an algorithm to identify all cubic fields with a discriminant bounded by X in essentially linear time, and computed the above values up to a(11).
The number of real cubic fields with discriminant <= X is asymptotic to X/(12*zeta(3)) = (0.069325...)*X. The second order term was conjectured by Roberts to be a known constant times X^{5/6}, and this was subsequently proved by Bhargava et al.

References

  • Henri Cohen, Advanced Topics in Computational Number Theory, Springer, 2000, p. 426 (and Chapter 8 more generally).

Crossrefs

A344409 Positive discriminants of orders with class number 3.

Original entry on oeis.org

148, 229, 257, 316, 321, 404, 469, 473, 564, 568, 592, 621, 733, 756, 761, 788, 837, 892, 916, 993, 1016, 1028, 1076, 1101, 1229, 1257, 1264, 1284, 1304, 1332, 1373, 1396, 1436, 1489, 1492, 1509, 1524, 1556, 1573, 1593, 1616, 1620, 1772, 1876, 1892, 1901, 1929, 1944
Offset: 1

Views

Author

Jianing Song, May 17 2021

Keywords

Comments

Also positive discriminants of orders with class group isomorphic to C_3.
The fundamental terms are listed in A094612.
It seems that for most k in this sequence, 4*k is also in this sequence. The smallest k such that this is not true is k = 564.
Conjecture: if a term k is congruent to 4 modulo 16, then k/4 is either here or in A133315; if a term k is congruent to 0 modulo 16, then k/4 is in this sequence.
Conjecture: a term k is in A006832 if and only if k/4 is not in this sequence.

Crossrefs

Cf. A133315 (positive discriminants of orders with class number 1), A344408 (class number 2), this sequence (class number 3).
Cf. A328825 (the negative discriminant case), A094612, A006832.

Programs

  • PARI
    isA344409(d) = (d>0) && !issquare(d) && ((d%4==0)||(d%4==1)) && quadclassunit(d)[2]==[3]

A349810 Numbers k such that Q(k^(1/3)) is a purely real cubic field.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99, 101, 102, 103, 105, 106, 107, 109, 110
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2021

Keywords

Crossrefs

Extensions

More than the usual number of terms are given in order to distinguish this from several similar sequences.

A106311 Possible positive values of the discriminant of irreducible monic integral cubic polynomials.

Original entry on oeis.org

49, 81, 148, 169, 229, 257, 316, 321, 361, 404, 469, 473, 564, 568, 592, 621, 697, 729, 733, 756, 761, 785, 788, 837, 892, 916, 940, 985, 993, 1016, 1076, 1101, 1129, 1229, 1257, 1264, 1300, 1304, 1345, 1369, 1373, 1384, 1396, 1425, 1436, 1489, 1492, 1509
Offset: 1

Views

Author

T. D. Noe, May 17 2005

Keywords

Comments

These discriminants were found by examining all irreducible integral cubic polynomials x^3+ax^2+bx+c for a,b,c in [ -30,30]. Closely related to A006832, discriminants of totally real cubic fields.
Previous Showing 11-19 of 19 results.