cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A157634 Triangle T(n, k) = 1 if k = 0 or k = n, otherwise n^5 - k^5 - (n-k)^5, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 30, 1, 1, 210, 210, 1, 1, 780, 960, 780, 1, 1, 2100, 2850, 2850, 2100, 1, 1, 4650, 6720, 7290, 6720, 4650, 1, 1, 9030, 13650, 15540, 15540, 13650, 9030, 1, 1, 15960, 24960, 29400, 30720, 29400, 24960, 15960, 1, 1, 26280, 42210, 51030, 54900, 54900, 51030, 42210, 26280, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 03 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,    30,     1;
  1,   210,   210,     1;
  1,   780,   960,   780,     1;
  1,  2100,  2850,  2850,  2100,     1;
  1,  4650,  6720,  7290,  6720,  4650,     1;
  1,  9030, 13650, 15540, 15540, 13650,  9030,     1;
  1, 15960, 24960, 29400, 30720, 29400, 24960, 15960,     1;
  1, 26280, 42210, 51030, 54900, 54900, 51030, 42210, 26280,     1;
  1, 40950, 67200, 82950, 91200, 93750, 91200, 82950, 67200, 40950, 1;
		

Crossrefs

Programs

  • Magma
    A157634:= func< n,k | k eq 0 or k eq n select 1 else n^5 - (k^5 + (n-k)^5) >;
    [A157634(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 13 2021
    
  • Mathematica
    T[n_, k_]:= If[n*k*(n-k)==0, 1, n^5 - (k^5 + (n-k)^5)];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
  • Sage
    def A157634(n,k): return 1 if (k==0 or k==n) else n^5 - (k^5 + (n-k)^5)
    flatten([[A157634(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 13 2021

Formula

T(n, k) = 1 if k = 0 or k = n, otherwise 5*n*k*(n-k)*(n^2 -n*k +k^2).
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2 - [n=0] + 30*A006858(n).
From G. C. Greubel, Dec 13 2021: (Start)
T(n, 1) = [n<2] + 30*A006325(n).
T(2*n, n) = [n=0] + 30*A000584(n). (End)
Previous Showing 11-11 of 11 results.