A157634 Triangle T(n, k) = 1 if k = 0 or k = n, otherwise n^5 - k^5 - (n-k)^5, read by rows.
1, 1, 1, 1, 30, 1, 1, 210, 210, 1, 1, 780, 960, 780, 1, 1, 2100, 2850, 2850, 2100, 1, 1, 4650, 6720, 7290, 6720, 4650, 1, 1, 9030, 13650, 15540, 15540, 13650, 9030, 1, 1, 15960, 24960, 29400, 30720, 29400, 24960, 15960, 1, 1, 26280, 42210, 51030, 54900, 54900, 51030, 42210, 26280, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 30, 1; 1, 210, 210, 1; 1, 780, 960, 780, 1; 1, 2100, 2850, 2850, 2100, 1; 1, 4650, 6720, 7290, 6720, 4650, 1; 1, 9030, 13650, 15540, 15540, 13650, 9030, 1; 1, 15960, 24960, 29400, 30720, 29400, 24960, 15960, 1; 1, 26280, 42210, 51030, 54900, 54900, 51030, 42210, 26280, 1; 1, 40950, 67200, 82950, 91200, 93750, 91200, 82950, 67200, 40950, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A157634:= func< n,k | k eq 0 or k eq n select 1 else n^5 - (k^5 + (n-k)^5) >; [A157634(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 13 2021
-
Mathematica
T[n_, k_]:= If[n*k*(n-k)==0, 1, n^5 - (k^5 + (n-k)^5)]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
Sage
def A157634(n,k): return 1 if (k==0 or k==n) else n^5 - (k^5 + (n-k)^5) flatten([[A157634(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 13 2021
Formula
T(n, k) = 1 if k = 0 or k = n, otherwise 5*n*k*(n-k)*(n^2 -n*k +k^2).
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2 - [n=0] + 30*A006858(n).
From G. C. Greubel, Dec 13 2021: (Start)
T(n, 1) = [n<2] + 30*A006325(n).
T(2*n, n) = [n=0] + 30*A000584(n). (End)