cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A224540 Number of numbers k such that all terms of the Collatz (3x+1) iteration of k are <= 3^n.

Original entry on oeis.org

1, 2, 4, 12, 36, 106, 249, 613, 1732, 8028, 23348, 69370, 210807, 634839, 1893582, 5686389, 17031777, 51073675, 153185957, 459516225, 1378707224, 4135278456
Offset: 0

Views

Author

T. D. Noe, Apr 24 2013

Keywords

Examples

			For n = 3, the twelve k are 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, and 24.
		

Crossrefs

Programs

  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; Table[Select[Range[3^n], Max[Collatz[#]] <= 3^n &], {n, 8}]

Extensions

a(20)-a(21) from Donovan Johnson, Jun 05 2013

A380138 a(n) is the largest value in the '3x+1' trajectory of starting points producing a record number of steps.

Original entry on oeis.org

1, 2, 16, 16, 52, 52, 52, 88, 9232, 9232, 9232, 9232, 9232, 9232, 9232, 9232, 9232, 9232, 250504, 190996, 190996, 250504, 250504, 250504, 481624, 975400, 975400, 497176, 11003416, 11003416, 106358020, 18976192, 41163712, 106358020, 21933016, 104674192, 593279152
Offset: 1

Views

Author

Hugo Pfoertner, Jan 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    s = Map[ToExpression,
      StringSplit[
        Import["https://oeis.org/A006877/b006877.txt", "Data"][[2 ;; -1]]
      ][[All, -1]] ];
    Map[Max@ NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, #, # > 1 &] &, s] (* Michael De Vlieger, Jan 13 2025 *)

Formula

a(n) = A025586(A006877(n)).

A336994 Entries of A336938 without duplicates.

Original entry on oeis.org

0, 4, 16, 52, 160, 9232, 13120, 39364, 41524, 250504, 1276936, 6810136, 8153620, 27114424, 50143264, 106358020, 121012864, 593279152, 1570824736, 2482111348, 2798323360, 17202377752
Offset: 1

Views

Author

Markus Sigg, Aug 10 2020

Keywords

Comments

Is this (apart from the first 2 entries) the same as A006885? - R. J. Mathar, Aug 16 2020

Crossrefs

Cf. A336938.

Programs

  • PARI
    firstMiss(A) = { my(i); if(#A == 0 || A[1] > 0, return(0)); for(i = 1, A[#A] + 1, if(!setsearch(A, i), return(i))); };
    iter(A) = { my(a = firstMiss(A)); while(!setsearch(A, a), A = setunion(A, Set([a])); a = if(a % 2, 3*a+1, a/2)); A; };
    makeVec(m) = { my(v = [], A = Set([0]), i); for(i = 1, m, if (length(v) == 0 || v[length(v)] != A[#A], v = concat(v, A[#A])); if (i < m, A = iter(A))); v; };
    makeVec(10000)

Extensions

a(16)-a(22) from Jinyuan Wang, Aug 13 2020
Previous Showing 11-13 of 13 results.