cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A341473 The number of antitransitive relations on n labeled nodes.

Original entry on oeis.org

1, 1, 4, 39, 921, 47462, 5205915, 1161039833, 516101770210
Offset: 0

Views

Author

Peter Kagey, Feb 13 2021

Keywords

Comments

A relation is antitransitive if xRy and yRz implies "not xRz". As such, antitransitive relations are always irreflexive.

Crossrefs

Number of relations on labeled nodes: A000110 (equivalence), A002416 (unrestricted), A006125 (symmetric), A006905 (transitive), A047656 (reflexive and antisymmetric), A083667 (antisymmetric), A341471 (antisymmetric and antitransitive).

Extensions

a(6)-a(8) from Bert Dobbelaere, Feb 27 2021

A343882 Triangular array read by rows: T(n,k) is the number of transitive relations on n labeled nodes with exactly k connected components.

Original entry on oeis.org

1, 0, 2, 0, 9, 4, 0, 109, 54, 8, 0, 2647, 1115, 216, 16, 0, 110481, 36280, 6790, 720, 32, 0, 7291543, 1801927, 287475, 32020, 2160, 64, 0, 726434549, 133060816, 16873619, 1718290, 129080, 6048, 128, 0, 106312974249, 14380028959, 1387285830, 118346473, 8584240, 467488, 16128, 256
Offset: 0

Views

Author

Geoffrey Critzer, May 02 2021

Keywords

Comments

T(n,n) = 2^n since each node is reflexive or not.

Examples

			Triangular array T(n,k) begins:
  1;
  0,      2;
  0,      9,     4;
  0,    109,    54,    8;
  0,   2647,  1115,  216,  16;
  0, 110481, 36280, 6790, 720, 32;
  ...
		

Crossrefs

Cf. A245731 (column k=1), A006905 (row sums), A001035.

Programs

  • Mathematica
    A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]]* Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]]; nn = 10;
    Range[0, nn]! CoefficientList[ Series[Exp[y Log[A[ x + Exp[ x] - 1]]], {x, 0, nn}], {x,y}] // Grid;Table[Take[(Range[0, nn]! CoefficientList[Series[Exp[y Log[A[ x + Exp[ x] - 1]]], {x, 0, nn}], {x, y}])[[i, All]], i], {i, 1, nn}] // Grid
      (* Import function in code after Jean-François Alcover *)

Formula

E.g.f.: A(x + exp(x) -1)^y where A(x) is the e.g.f. for A001035.

A348634 Number of transitive relations on an n-set with exactly five ordered pairs.

Original entry on oeis.org

0, 0, 0, 27, 768, 8771, 63468, 340620, 1470784, 5371002, 17153352, 49075521, 128066400, 309124101, 697874996, 1486830618, 3011414784, 5833686340, 10863883728, 19532496375, 34028554944, 57623258007, 95101946940, 153331834040, 241997811264, 374544148830, 569365964440, 851301035325, 1253479866912, 1819599953913, 2606698902276
Offset: 0

Views

Author

Firdous Ahmad Mala, Dec 13 2021

Keywords

Examples

			No relation containing exactly five ordered pairs on a 2-element set exists. Thus a(2)=0.
Also, there are 27 transitive relations with exactly five ordered pairs on a 3-set. One such relation is {(1,1),(1,2),(1,3),(2,2),(3,2)} on the 3-set {1,2,3}.
		

Crossrefs

Programs

  • Python
    def A348634(n): return n*(n - 2)*(n - 1)*(n*(n*(n*(n*(n*(n*(n - 17) + 167) - 965) + 3481) - 7581) + 9060) - 4608)//120 # Chai Wah Wu, Jan 06 2022

Formula

a(n) = 27*C(n,3) + 660*C(n,4) + 5201*C(n,5) + 21822*C(n,6) + 54600*C(n,7) + 84000*C(n,8) + 75600*C(n,9) + 30240*C(n,10).
a(n) = (1/120)*(n^10 - 20*n^9 + 220*n^8 - 1500*n^7 + 6710*n^6 - 19954*n^5 + 38765*n^4 - 46950*n^3 + 31944*n^2 - 9216*n).
a(n) = C(n,3)*(n^7 - 17*n^6 + 167*n^5 - 965*n^4 + 3481*n^3 - 7581*n^2 + 9060*n - 4608)/20. - Chai Wah Wu, Jan 06 2022

Extensions

a(9) corrected by Georg Fischer, Mar 19 2023

A296105 a(n) is the number of connected transitive relations over n unlabeled nodes.

Original entry on oeis.org

1, 2, 5, 25, 157, 1325, 14358, 199763, 3549001, 80673244, 2352747542, 88240542454, 4261209044877, 264988507673267, 21207485269909946, 2182146922863398203
Offset: 0

Views

Author

Daniele P. Morelli, Dec 04 2017

Keywords

Comments

Inverse Euler transform of A091073. Here "connected" means that it is possible to reach any vertex starting from any other vertex by traversing edges in some direction, i.e., not necessarily in the direction in which the edges point, as in weakly connected digraphs.

Examples

			a(2) = 5 because there are five connected transitive relations up to isomorphism: a->b with no loops, a->b with a loop on a, a->b with a loop on b, a->b->a with no loops, and a->b->a with loops on both a and b.
		

Crossrefs

Cf. A091073 (all unlabeled transitive relations). For the labeled case, see A245731 (connected labeled transitive relations) and A006905 (all labeled transitive relations).

Programs

  • Mathematica
    A091073 = Cases[Import["https://oeis.org/A091073/b091073.txt", "Table"], {, }][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    {1} ~Join~ EulerInvTransform[A091073 // Rest] (* Jean-François Alcover, Dec 29 2019, updated Mar 17 2020 *)

A345317 Number of transitive but not symmetric relations on an n-set.

Original entry on oeis.org

0, 0, 8, 156, 3942, 154100, 9414312, 878218390, 122207682476, 24890747805972, 7307450298831718, 3053521546328889460, 1797003559223742679800, 1476062693867018935173990, 1679239558149570227773844452, 2628225174143857306613215434524, 5626175867513779058706923151723150
Offset: 0

Views

Author

Firdous Ahmad Mala, Oct 02 2021

Keywords

Comments

The number of relations on n elements that are symmetric and transitive is the same as the number of equivalence relations on n+1 elements. Consequently, the number of relations that are transitive but not symmetric is obtained by subtracting the terms in the sequence of Bell numbers from that of the sequence of number of labeled transitive relations.
a(n) is even for all n.

Examples

			For n=3, a(3) = A006905(3) - A000110(4) = 171 - 15 = 156.
		

Crossrefs

Formula

a(n) = A006905(n) - A000110(n+1).

A347914 Number of quasitransitive relations on n labeled nodes.

Original entry on oeis.org

1, 2, 16, 400, 28544, 5531648, 2818499584
Offset: 0

Views

Author

Dave Palfrey, Sep 19 2021

Keywords

Comments

Quasitransitivity is weaker than transitivity.

Crossrefs

Cf. A006905 (number of transitive relations on n labeled nodes).

A348137 Number of transitive relations involving all the elements of an n-set.

Original entry on oeis.org

1, 1, 10, 137, 3381, 135922, 8546045, 815422505, 115437178060, 23821722677391, 7063938719374373, 2974488705436714248, 1760838176228838354751, 1452937749988032952760937, 1658737103542768935354921618, 2603190753864086778265813466485, 5584324950136613655245377359839793
Offset: 0

Views

Author

Firdous Ahmad Mala, Oct 02 2021

Keywords

Examples

			a(3) = A006905(3) - 1 - 3 - 30 = 137, where the numbers of transitive relations involving 0,1,2 elements on a 3-set are 1,3,30.
		

Crossrefs

Cf. A006905.

Formula

a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*A006905(n-k).

A355783 Triangular array read by rows. T(n,k) is the number of labeled transitive relations on [n] that have exactly k symmetric points.

Original entry on oeis.org

1, 2, 0, 12, 0, 1, 152, 0, 18, 1, 3504, 0, 456, 24, 10, 135392, 0, 17520, 760, 600, 31, 8321472, 0, 1015440, 35040, 40560, 2316, 361, 784621952, 0, 87375456, 2369360, 3615360, 185556, 52682, 2164, 110521185024, 0, 10984707328, 233001216, 441616000, 19052992, 7723408, 384992, 32663
Offset: 0

Views

Author

Geoffrey Critzer, Jul 16 2022

Keywords

Comments

Let R be a binary relation on [n]. Then x in [n] is a symmetric point of R if there is a y in [n] with x != y and both (x,y),(y,x) in R.

Examples

			       1,
       2, 0,
      12, 0,     1,
     152, 0,    18,   1,
    3504, 0,   456,  24,  10,
  135392, 0, 17520, 760, 600, 31
		

Crossrefs

Cf. A280202 (main diagonal), A085628 (column k=0), A006905 (row sums).

Programs

  • Mathematica
    nn = 18; A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt",
        "Table"], {, }][[All, 2]]; A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, nn}];
    Table[Take[(Range[0, nn]! CoefficientList[Series[A[Exp[y x] - 1 - y x + x + x], {x, 0, nn}], {x,y}])[[i]], i], {i, 1, nn}] // Grid

Formula

E.g.f.: A(exp(y*x) - 1 - y*x + 2*x) where A(x) is the e.g.f. for A001035.
Previous Showing 21-28 of 28 results.