cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A006926 Number of connected trivalent graphs with 2n nodes and girth exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7573, 181224, 4624480, 122089998, 3328899586, 93988909755
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.
  • Gordon Royle, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); specified g: A006923 (g=3), A006924 (g=4), A006925 (g=5), this sequence (g=6), A006927 (g=7).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).

Formula

a(n) = A014374(n) - A014375(n).

Extensions

Definition corrected to include "connected", and "girth at least 6" minus "girth at least 7" formula provided by Jason Kimberley, Dec 12 2009

A184943 Number of connected 4-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 5, 16, 57, 263, 1532, 10747, 87948, 803885, 8020590, 86027734, 983417704, 11913817317, 152352034707, 2050055948375, 28951137255862, 428085461764471
Offset: 0

Views

Author

Jason Kimberley, Jan 25 2011

Keywords

Examples

			a(0)=0 because even though the null graph (on zero vertices) is vacuously 4-regular and connected, since it is acyclic, it has infinite girth.
The a(5)=1 complete graph on 5 vertices is 4-regular; it has 10 edges and 10 triangles.
		

Crossrefs

4-regular simple graphs with girth exactly 3: this sequence (connected), A185043 (disconnected), A185143 (not necessarily connected).
Connected k-regular simple graphs with girth exactly 3: A006923 (k=3), this sequence (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9).
Connected 4-regular simple graphs with girth at least g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: this sequence (g=3), A184944 (g=4), A184945 (g=5).

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A006820 = A@006820; A033886 = A@033886;
    a[n_] := A006820[[n + 1]] - A033886[[n + 1]];
    a /@ Range[0, 22] (* Jean-François Alcover, Jan 27 2020 *)

Formula

a(n) = A006820(n) - A033886(n).

Extensions

Term a(22) corrected and a(23) appended, due to the correction and extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 13 2020

A185133 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 1, 1, 4, 15, 71, 428, 3406, 34270, 418621, 5937051, 94782437, 1670327647, 32090011476, 666351752261, 14859579573845
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), this sequence (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: this sequence (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A005638(n) - A185334(n).
a(n) = A006923(n) + A185033(n).

A006927 Number of connected trivalent graphs with 2n nodes and girth exactly 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 21, 545, 30368, 1782839, 95079080, 4686063107
Offset: 0

Views

Author

Keywords

References

  • Gordon Royle, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); specified g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), this sequence (g=7).
Connected 3-regular simple graphs with girth at least g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).

Formula

a(n) = A014375(n) - A014376(n).

Extensions

Definition amended to include "connected" (no disconnected yet), and "girth at least 7" minus "girth at least 8" formula provided by Jason Kimberley, Dec 12 2009

A184953 Number of connected 5-regular (or quintic) simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 1, 3, 59, 7847, 3459376, 2585136287, 2807104844073
Offset: 0

Views

Author

Jason Kimberley, Feb 27 2011

Keywords

Crossrefs

Connected k-regular simple graphs with girth exactly 3: A006923 (k=3), A184943 (k=4), this sequence (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9).
Connected 5-regular simple graphs with girth at least g: A006821 (g=3), A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (g=3), A184954 (g=4), A184955 (g=5).

Formula

a(n) = A006821(n) - A058275(n).

A186733 Triangular array C(n,r) = number of connected r-regular graphs, having girth exactly 3, with n nodes, for 0 <= r < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 5, 3, 1, 1, 0, 0, 0, 0, 16, 0, 4, 0, 1, 0, 0, 0, 13, 57, 59, 21, 5, 1, 1, 0, 0, 0, 0, 263, 0, 266, 0, 6, 0, 1, 0, 0, 0, 63, 1532, 7847, 7848, 1547, 94, 9, 1, 1, 0, 0, 0, 0, 10747, 0, 367860, 0, 10786
Offset: 1

Views

Author

Jason Kimberley, Mar 26 2012

Keywords

Examples

			01: 0 ;
02: 0, 0 ;
03: 0, 0, 1 ;
04: 0, 0, 0, 1 ;
05: 0, 0, 0, 0, 1 ;
06: 0, 0, 0, 1, 1, 1 ;
07: 0, 0, 0, 0, 2, 0, 1 ;
08: 0, 0, 0, 3, 5, 3, 1, 1 ;
09: 0, 0, 0, 0, 16, 0, 4, 0, 1 ;
10: 0, 0, 0, 13, 57, 59, 21, 5, 1, 1 ;
11: 0, 0, 0, 0, 263, 0, 266, 0, 6, 0, 1 ;
12: 0, 0, 0, 63, 1532, 7847, 7848, 1547, 94, 9, 1, 1 ;
13: 0, 0, 0, 0, 10747, 0, 367860, 0, 10786, 0, 10, 0, 1 ;
14: 0, 0, 0, 399, 87948, 3459376, 21609299, 21609300, 3459386, 88193, 540, 13, 1, 1 ;
15: 0, 0, 0, 0, 803885, 0, 1470293674, 0, 1470293676, 0, 805579, 0, 17, 0, 1 ;
16: 0, 0, 0, 3268, 8020590, 2585136287, 113314233799, 733351105933, 733351105934, 113314233813, 2585136741, 8037796, 4207, 21, 1, 1;
		

Crossrefs

The sum of the n-th row is A186743(n).
Connected k-regular simple graphs with girth exactly 3: this sequence (triangle), A186743 (any k); chosen k: A006923 (k=3), A184943 (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *at least* g: A068934 (g=3), A186714 (g=4), A186715 (g=5), A186716 (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *exactly* g: this sequence (g=3), A186734 (g=4).

Formula

C(n,r) = A068934(n,r) - A186714(n,r), noting that A186714 has 0 <= r <= n div 2.

A186743 Number of connected regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 3, 13, 21, 157, 536, 18942, 389404, 50314456, 2942196832, 1698517018391
Offset: 0

Views

Author

Jason Kimberley, Dec 01 2011

Keywords

Crossrefs

Connected k-regular simple graphs with girth exactly 3: this sequence (any k), A186733 (triangular array); specified k: A006923 (k=3),A184943 (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7),A184983 (k=8), A184993 (k=9).

Formula

a(n) = A005177(n) - A186724(n).

A210709 Number of trivalent connected simple graphs with 2n nodes and girth at least 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18
Offset: 0

Views

Author

Jason Kimberley, Dec 20 2012

Keywords

Crossrefs

Trivalent simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8), this sequence (g=9).
Trivalent simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).

Formula

a(29) = a(A000066(9)/2) = A052453(9) = 18 is the number of (3,9) cages.
Previous Showing 11-18 of 18 results.