cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A292572 Lucas-Carmichael numbers whose Dedekind psi value is a cube.

Original entry on oeis.org

8855, 31535, 73535, 265895, 12676799, 30071327, 86450399, 561645839, 674628479, 741722399, 945066527, 1066699799, 1304305415, 2239506719, 2423951999, 2693338559, 3512071871, 4708417055, 4811496767, 8194093919, 9140299199, 9184665599, 9405512639, 11729537855
Offset: 1

Views

Author

Amiram Eldar, Sep 19 2017

Keywords

Examples

			psi(8855) = 24^3.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n < 1, 0, n*Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]]; s = Import["b006972.txt","Data"][[All,-1]];Select[s, IntegerQ@Power[psi@#, 1/3] &]

A349028 Lucas-Carmichael numbers with 9 prime factors.

Original entry on oeis.org

14563696180319, 16569718534655, 20203946790335, 22034564147519, 23315834862719, 23889526894079, 27074874805055, 28932092649215, 31534433588735, 34236981827279, 34249223161439, 45373136257295, 45593377151399, 50103079391519, 50415330959279, 50683388926247
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Nov 06 2021

Keywords

Examples

			14563696180319 = 11*13*17*23*29*41*47*59*79 and 12, 14, 18, 24, 30, 42, 48, 60, and 80 all divide 14563696180320.
		

Crossrefs

Intersection of A006972 and A046312.
Cf. A216928 (least Lucas-Carmichael number with n prime factors).
Cf. A216925, A216926, A216927, A217002, A217003, A217091, A349029, A349030 (Lucas-Carmichael numbers with 3-8, 10 and 11 prime factors).

Programs

  • PARI
    is(n)={omega(n)==9&&is_A006972(n)}

A349029 Lucas-Carmichael numbers with 10 prime factors.

Original entry on oeis.org

989565001538399, 1250312791224959, 1419432982021439, 1518134614712639, 2240225337903839, 2493922560242399, 2708548708646879, 2786001880066559, 2807577905060159, 2808521396058455, 3157015238986895, 3210972445532159, 3221015190555239, 3407706183722399, 3614740529402519
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Nov 06 2021

Keywords

Examples

			989565001538399 = 11*13*17*19*29*31*41*47*83*149 and 12, 14, 18, 20, 30, 32, 42, 48, 84, and 150 all divide 989565001538400.
		

Crossrefs

Intersection of A006972 and A046314.
Cf. A216928 (least Lucas-Carmichael number with n prime factors).
Cf. A216925, A216926, A216927, A217002, A217003, A217091, A349028, A349030 (Lucas-Carmichael numbers with 3-9 and 11 prime factors).

Programs

  • PARI
    is(n)={omega(n)==10&&is_A006972(n)}

A349030 Lucas-Carmichael numbers with 11 prime factors.

Original entry on oeis.org

20576473996736735, 42380075646230399, 75943207554554879, 83668951228080959, 96195222056687039, 116436396482735615, 132525862783734959, 134052021887096159, 162544912900261199, 175900784368936319, 186326804496197519, 190523141606006495, 196467189590024639
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Nov 06 2021

Keywords

Examples

			20576473996736735 = 5*7*11*17*23*31*47*53*71*107*233 and 6, 8, 12, 18, 24, 32, 48, 54, 72, 108, and 234 all divide 20576473996736736.
		

Crossrefs

Intersection of A006972 and A069272.
Cf. A216928 (least Lucas-Carmichael number with n prime factors).
Cf. A216925, A216926, A216927, A217002, A217003, A217091, A349028, A349029 (Lucas-Carmichael numbers with 3-10 prime factors).

Programs

  • PARI
    is(n)={omega(n)==11&&is_A006972(n)}

A110885 Lucas-Carmichael numbers that are not congruent to 11 (mod 12).

Original entry on oeis.org

399, 5719, 20705, 80189, 120581, 162687, 482143, 663679, 1162349, 7274249, 8734109, 9486399, 10260809, 10397407, 14658349, 14970499, 25603599, 29010079, 32869759, 49412285, 77801359, 90393029, 95972799, 99467679, 105818129, 110066669, 125532329, 126325399
Offset: 1

Views

Author

Walter Kehowski, Sep 19 2005

Keywords

Comments

There are 9967 Lucas-Carmichael numbers less than 10^12, and all but 332 are congruent to 11 (mod 12).

Examples

			5719=7*19*43=7 mod 12.
		

Crossrefs

Cf. A006972.

Programs

  • Maple
    with(numtheory); LC:=[]: for z from 1 to 1 do for m from 1 to 2000000 do n:=2*m+1; if not(isprime(n)) and issqrfree(n) then PF:=factorset(n); lcb:=true; for x in PF do if (n+1) mod (x+1) > 0 then lcb:=false fi od; if lcb then LC:=[op(LC),n]; fi; fi; #not od; #m od; #z select(proc(z) not(z mod 12 = 11) end, LC);

Extensions

a(10) onward from Robert G. Wilson v, Feb 12 2015

A216929 Number of Lucas-Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 0, 2, 8, 26, 60, 135, 323, 791, 1840, 4216, 9967, 23070, 54356, 129125
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 20 2012

Keywords

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers).

Programs

  • PARI
    lucas_carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=min(sqrtint(B+1)-1, sqrtnint(B\m, k))); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(-1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n+1)%(p+1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p+1) == 1, list=concat(list, f(m*p, lcm(l, p+1), p+1, k-1))))); list); f(1, 1, 3, k);
    a(n) = my(N=10^n); my(count=0); for(k=3, oo, if(vecprod(primes(k+1))\2 > N, break); count += #lucas_carmichael(1, N, k)); count; \\ Daniel Suteu, Dec 01 2023

Extensions

a(9)-a(11) from Donovan Johnson, Sep 22 2012
a(12) from Donovan Johnson, Sep 26 2012
a(13)-a(15) from Daniel Suteu, Dec 01 2023

A290810 Numbers k such that 6k-1, 12k-1 and 18k-1 are all primes.

Original entry on oeis.org

1, 4, 5, 14, 15, 29, 39, 40, 49, 70, 110, 159, 169, 204, 235, 260, 264, 315, 334, 355, 390, 425, 449, 490, 560, 565, 599, 634, 725, 729, 735, 820, 824, 889, 1019, 1029, 1349, 1379, 1419, 1510, 1580, 1590, 1694, 1719, 1765, 1925, 1930, 1950, 1985, 2044, 2150
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2017

Keywords

Comments

If k is in the sequence then (6k-1)(12k-1)(18k-1) = 36k * (36k^2 - 11k + 1) - 1 is a Lucas-Carmichael number (A006972).
Analogous to A046025 as A006972 (Lucas-Carmichael numbers) is analogous to A002997 (Carmichael numbers).

Examples

			1 is in the sequence since 6*1 - 1 = 5, 12*1 - 1 = 11 and 18*1 - 1 = 17 are all primes, and 5*11*17 = 935 is a Lucas-Carmichael number.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; Do[ If[ AllTrue[{6 m - 1, 12 m - 1, 18 m - 1}, PrimeQ ], AppendTo[seq, m] ], {m, 1, 10^5} ]; seq
  • PARI
    isok(n) = isprime(6*n-1) && isprime(12*n-1) && isprime(18*n-1); \\ Michel Marcus, Aug 11 2017

Formula

6*a(n) - 1 = A067256(n+1).

A290811 Numbers n such that (6n-1, 6n+1), (12n-1, 12n+1) and (18n-1, 18n+1) are 3 pairs of twin primes.

Original entry on oeis.org

1, 8925, 70070, 70385, 270725, 355040, 566650, 866635, 874335, 1091545, 1230740, 1295980, 1586095, 1594285, 1738380, 1974210, 2201325, 2427145, 2436665, 3124660, 3349990, 3599470, 3661350, 4059825, 4101790, 4486020, 4726540, 5139680, 5613370, 5898655, 6279035
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2017

Keywords

Comments

If n is in the sequence then (6n+1)*(12n+1)*(18n+1) is a Carmichael number (A002997) and (6n-1)*(12n-1)*(18n-1) is a Lucas-Carmichael number (A006972).
Intersection of A046025 and A290810.
The first 10 pairs of corresponding Lucas-Carmichael and Carmichael numbers ((6n-1)*(12n-1)*(18n-1), (6n+1)*(12n+1)*(18n+1)) are:
(935, 1729)
(921329139943799, 921392227198801)
(445860973748310119, 445864862313790921)
(451901165073782759, 451905088679976961)
(25715181770344848599, 25715239817629143601)
(58001133699332691839, 58001233533626759041)
(235803065459494289399, 235803319764534509401)
(843555229160685647759, 843555823997214441961)
(866240412591524160959, 866241018045184403161)
(1685504102154302331719, 1685505045798928055521)
(2416038446298343361039, 2416039645957333860241)

Examples

			1 is in the sequence since (6*1 - 1, 6*1 + 1) = (5, 7), (12*1 - 1, 12*1 + 1) = (11, 13) and (18*1 - 1, 18*1 + 1) = (17, 19) are all pairs of twin primes.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; Do[ If[ AllTrue[{6 m - 1, 6 m + 1, 12 m - 1, 12 m + 1, 18 m - 1,
        18 m + 1}, PrimeQ ], AppendTo[seq, m]], {m, 1, 10^7} ]; seq
    Select[Range[6280000],AllTrue[{6#+1,6#-1,12#+1,12#-1,18#+1,18#-1},PrimeQ]&] (* Harvey P. Dale, Jun 21 2024 *)
  • PARI
    isok(n) = isprime(6*n-1) && isprime(6*n+1) && isprime(12*n-1) && isprime(12*n+1) && isprime(18*n-1) && isprime(18*n+1); \\ Michel Marcus, Aug 11 2017

A292352 Numbers that generate Lucas-Carmichael numbers using an adjusted version of Erdős's method.

Original entry on oeis.org

24, 36, 40, 48, 60, 72, 80, 84, 96, 108, 120, 144, 168, 180, 192, 200, 216, 240, 252, 270, 300, 324, 336, 360, 384, 400, 420, 432, 440, 468, 480, 504, 528, 540, 576, 588, 600, 624, 648, 660, 672, 714, 720, 744, 756, 768, 792, 810, 840, 864, 900, 912, 936, 960
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2017

Keywords

Comments

Erdős showed in 1956 how to construct Carmichael numbers from a given number n (see A287840). With appropriate sign changes the method can be used to generate Lucas-Carmichael numbers. Given a number n, let P be the set of primes p such that (p+1)|n but p is not a factor of n. Let c be a product of a subset of P with at least 3 elements. If c == -1 (mod n) then c is a Lucas-Carmichael number.
Numbers with only one generated Lucas-Carmichael number: 24, 36, 40, 48, 60, 80, 84, 96, 108, 200, 252, 270, 300, 324, 336, 400, 440, 468, ...

Examples

			The set of primes for n = 24 is P={2, 3, 5, 7, 11, 23}. One subset, {5, 7, 11, 23} have c == -1 (mod n): c = 5*7*11*23 = 8855. 24 is the least number that generates Lucas-Carmichael numbers thus a(1)=24.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[p = Select[Divisors[n] - 1, PrimeQ]; pr = Times @@ p; pr = pr/GCD[n, pr]; ps = Divisors[pr]; c = 0; Do[p1 = FactorInteger[ps[[j]]][[;; , 1]]; If[Length[p1] < 3, Continue[]]; c1 = Times @@ p1; If[Mod[c1, n] == 1, c++], {j, 1, Length[ps]}]; If[c > 0, AppendTo[a, n]], {n, 1, 1000}]; a

A292538 Lucas-Carmichael numbers of the form k^2 - 1.

Original entry on oeis.org

399, 2915, 7055, 63503, 147455, 1587599, 1710863, 2249999, 2924099, 6656399, 9486399, 14288399, 19289663, 25603599, 26936099, 28451555, 31270463, 32148899, 45158399, 49280399, 71368703, 91011599, 105884099, 111513599, 144288143, 146894399, 150405695, 152028899, 175827599
Offset: 1

Views

Author

Amiram Eldar, Sep 18 2017

Keywords

Comments

Intersection of A005563 and A006972.
The numbers k such that k^2 - 1 is a Lucas-Carmichael number are 20, 54, 84, 252, 384, 1260, 1308, 1500, 1710, 2580, 3080, 3780, 4392, ...
From David A. Corneth, Aug 26 2023: (Start)
As k^2 - 1 = (k - 1)*(k + 1) and k is even we have k-1 and k+1 are coprime. So we can factor k-1 and k+1 separately when checking if k^2 - 1 is a term.
Possible other ideas are factoring an odd number only once, keeping it for the factorization of k^2 - 1 and (k + 2)^2 - 1. Alternatively dodging k = 18m +- 8, 18m +- 10 or 50m +- 24, 50m +- 26 to not get numbers that are multiples of odd primes squared. (End)
Wagstaff (2024) found that among the first 10^4 Lucas-Carmichael numbers there are 164 that are also Cunningham numbers (A080262) and that all of them are in this sequence. Below 10^15 there are 682 Lucas-Carmichael numbers that are also Cunningham numbers, and all of them are in this sequence (checked using the list of Lucas-Carmichael numbers by Daniel Suteu at A006972). - Amiram Eldar, Dec 29 2024

Crossrefs

Programs

  • Maple
    filter:= t ->
      andmap(f -> f[2]=1 and (t+1) mod (f[1]+1) = 0, ifactors(t)[2]):
    select(filter, [seq(k^2-1, k=3..10^5)]); # Robert Israel, Sep 24 2017
  • Mathematica
    lcQ[n_] := !PrimeQ[n] && Union[Transpose[FactorInteger[n]][[2]]] == {1} && Union[Mod[n + 1, Transpose[FactorInteger[n]][[1]] + 1]] == {0}; Select[Range[2, 10^4]^2 - 1, lcQ]

Extensions

More terms from David A. Corneth, Aug 26 2023
Previous Showing 21-30 of 47 results. Next