cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A333927 Recursive perfect numbers: numbers k such that A333926(k) = 2*k.

Original entry on oeis.org

6, 28, 264, 1104, 3360, 75840, 151062912, 606557952, 2171581440
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

Since a recursive divisor is also a (1+e)-divisor (see A049599), then the first 6 terms and other terms of this sequence coincide with those of A049603.

Examples

			264 is a term since the sum of its recursive divisors is 1 + 2 + 3 + 6 + 8 + 11 + 22 + 24 + 33 + 66 + 88 + 264 = 528 = 2 * 264.
		

Crossrefs

Analogous sequences: A000396, A002827 (unitary), A007357 (infinitary), A054979 (exponential), A064591 (nonunitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], recDivSum[#] == 2*# &]

A372298 Primitive infinitary abundant numbers (definition 1): infinitary abundant numbers (A129656) whose all proper infinitary divisors are infinitary deficient numbers.

Original entry on oeis.org

40, 56, 70, 72, 88, 104, 756, 924, 945, 1092, 1188, 1344, 1386, 1428, 1430, 1596, 1638, 1760, 1870, 2002, 2016, 2080, 2090, 2142, 2176, 2210, 2394, 2432, 2470, 2530, 2584, 2720, 2750, 2944, 2990, 3040, 3128, 3190, 3200, 3230, 3250, 3400, 3410, 3496, 3712, 3770
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2024

Keywords

Examples

			40 is a term since it is an infinitary abundant number and all its proper infinitary divisors, {1, 2, 4, 5, 8, 10, 20}, are infinitary deficient numbers.
24 and 30, which are infinitary abundant numbers, are not primitive, because they are divisible by 6 which is an infinitary perfect number.
		

Crossrefs

Subsequence of A129656 and A372299.
A372300 is a subsequence.
Similar sequences: A071395, A298973, A302573, A307112, A307114, A307115.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]];
    isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; idefQ[n_] := isigma[n] < 2*n; idivs[1] = {1};
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    q[n_] := Module[{d = idivs[n]}, Total[d] > 2*n && AllTrue[Most[d], idefQ]]; Select[Range[4000], q]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
    is(n) = isigma(n) > 2*n && select(x -> x < n && isigma(x) >= 2*x, idivs(n)) == [];

A127664 Infinitary amicable numbers.

Original entry on oeis.org

114, 126, 594, 846, 1140, 1260, 4320, 5940, 7920, 8460, 8640, 10744, 10856, 11760, 12285, 13500, 14595, 17700, 25728, 35712, 43632, 44772, 45888, 49308, 60858, 62100, 62700, 67095, 67158, 71145, 73962, 74784, 79296, 79650, 79750, 83142, 83904, 86400, 88730
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Examples

			a(5)=1140 because 1140 is the fifth infinitary amicable number.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryAmicableNumberQ[k_]:=If[Nest[properinfinitarydivisorsum,k,2]==k && !properinfinitarydivisorsum[k]==k,True,False];Select[Range[50000],InfinitaryAmicableNumberQ[ # ] &]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k != n && infs[k] == n, AppendTo[s, n]], {n, 2, 10^5}]; s (* Amiram Eldar, Mar 16 2019 *)

Formula

Non-infinitary perfect numbers which satisfy A126168(A126168(n)) = n.

Extensions

More terms from Amiram Eldar, Mar 16 2019

A185088 a(n) = |n^2 - A185079(n)|.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 4, 1, 10, 1, 4, 1, 4, 9, 1, 1, 6, 1, 10, 7, 20, 1, 24, 1, 4, 9, 24, 1, 36, 1, 4, 33, 22, 25, 4, 1, 4, 9, 20, 1, 132, 1, 16, 45, 28, 1, 8, 1, 4, 9, 26, 1, 36, 1, 104, 49, 34, 1, 0, 1, 4, 49, 16, 25, 36, 1, 34, 57, 140, 1, 84, 1, 4, 9, 76, 73, 36, 1, 26, 1, 80, 1, 16, 11, 128, 9, 4, 1, 180, 105, 64, 55, 92, 25, 36
Offset: 2

Views

Author

Vladimir Shevelev, Feb 18 2011

Keywords

Comments

Zeros a(z)=0 occur at z=6, 60, 120, 360, 816,... For these z, A049417(z) | z^2, but there may be other numbers like 90, 180, 540,... satisfying this divisibility criterion which are not places of zeros (the criterion is necessary, not sufficient), see A185288.

Crossrefs

Formula

a(A050376(n)) = 1.

A185288 Numbers n for which the terms of the multiplicative sequence {n^2/A049417(n)} are integers.

Original entry on oeis.org

1, 6, 60, 90, 120, 180, 360, 540, 816, 840, 1080, 1740, 1980, 2280, 2520, 3060, 3960, 5712, 6120, 8280, 9540, 11880, 12240, 16920, 18360, 19260, 24480, 25296, 25560, 32760, 36720, 42840, 48960, 54672, 57240, 63700, 73440, 74256, 84360, 85680, 97920, 103320, 115560
Offset: 1

Views

Author

Vladimir Shevelev, Feb 20 2011

Keywords

Comments

The sequence contains all infinitary perfect numbers (see A007357).

Examples

			Let n=120. Its representation over distinct terms of A050376 is 2*3*4*5. Therefore A049417(n)=(2+1)*(3+1)*(4+1)*(5+1)=360. Since 360 is a divisor of 120^2, 120 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; aQ[n_] := Divisible[n^2, isigma[n]]; Select[Range[58000], aQ] (* Amiram Eldar, Jul 21 2019 *)

Extensions

More terms from Nathaniel Johnston, Mar 16 2011
More terms from Amiram Eldar, Jul 21 2019

A331108 Zeckendorf-infinitary perfect numbers: numbers k such that A331107(k) = 2*k.

Original entry on oeis.org

6, 60, 90, 3024, 133056, 1330560, 6879600, 28828800, 302702400, 698544000, 11763214848
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

No more terms below 4*10^10.

Examples

			6 is a term since A331107(6) = 12 = 2*6.
		

Crossrefs

Programs

  • Mathematica
    fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; Fibonacci[1 + Position[Reverse@fr, ?(# == 1 &)]]]; f[p, e_] := p^fb[e]; zsigma[1] = 1; zsigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); zPerfectQ[n_] := zsigma[n] == 2 n; Select[Range[10^4], zPerfectQ] (* after Robert G. Wilson v at A014417 *)

A309843 Numbers m that equal the sum of their first k consecutive aliquot infinitary divisors, but not all of them (i.e k < A037445(m) - 1).

Original entry on oeis.org

24, 360, 4320, 14688, 1468800, 9547200, 50585472, 54198720, 189695520, 1680459264
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2019

Keywords

Comments

The infinitary version of Erdős-Nicolas numbers (A194472).
If all the aliquot infinitary divisors are permitted (i.e. k <= A037445(n) - 1), then the infinitary perfect numbers (A007357) are included.

Examples

			24 is in the sequence since its aliquot infinitary divisors are 1, 2, 3, 4, 6, 8, 12 and 24 and 1 + 2 + 3 + 4 + 6 + 8 = 24.
		

Crossrefs

Programs

  • Mathematica
    idivs[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[ x ] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; subtr = If[#1 < #2, Throw[#1], #1 - #2] &; selDivs[n_] := Catch@Fold[subtr, n, Drop[idivs[n], -2]]; s= {}; Do[If[selDivs[n] == 0, AppendTo[s, n]], {n, 2, 10^6}]; s(* after Alonso del Arte at A194472 *)

A331111 Dual-Zeckendorf-infinitary perfect numbers: numbers k such that A331110(k) = 2*k.

Original entry on oeis.org

6, 60, 90, 655200, 28828800, 238140000, 10478160000
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

No more terms below 2.8*10^10.

Examples

			6 is a term since A331110(6) = 12 = 2*6.
		

Crossrefs

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, {}, v[[i[[1, 1]] ;; -1]]]];
    f[p_, e_] := p^Fibonacci[1 + Position[Reverse @ dualZeck[e], _?(# == 1 &)]];
    dzsigma[1] = 1; dzsigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); seqQ[n_] := dzsigma[n] == 2n; Select[Range[10^6], seqQ]

A335937 Infinitary pseudoperfect numbers (A306983) that equal to the sum of a subset of their aliquot infinitary divisors in a single way.

Original entry on oeis.org

6, 60, 72, 78, 88, 90, 96, 102, 104, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 426, 438, 474, 486, 498, 534, 582, 606, 618, 642, 654, 678, 726, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1014, 1038, 1074, 1086, 1146, 1158, 1182, 1194
Offset: 1

Views

Author

Amiram Eldar, Jun 30 2020

Keywords

Examples

			72 is a term since its set of infinitary aliquot divisors is {1, 2, 4, 8, 9, 18, 36}, and {1, 8, 9, 18, 36} is its only subset whose sum is equal to 72.
		

Crossrefs

The infinitary version of A064771.
Subsequence of A306983.
A007357 is a subsequence.
Similar sequences: A295829, A295830, A321145.

Programs

  • Mathematica
    idivs[x_] := If[x == 1, 1, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infpspQ[n_] := Module[{d = Most @ idivs[n], x}, Plus @@ d >= n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 1]; Select[Range[2, 1200], infpspQ]

A360524 Numbers k such that A360522(k) = 2*k.

Original entry on oeis.org

6, 12, 198, 240, 264, 270, 396, 540, 6720, 7920, 11880, 13770, 27540, 221760, 337440, 605880, 2500344, 6072570, 11135520, 12145140, 267193080, 441692160, 1112629770, 2225259540, 14575841280, 48955709880
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

Analogous to perfect numbers (A000396) with A360522 instead of A000203.
a(27) > 10^11, if it exists.

Examples

			6 is a term since A360522(6) = 12 = 2 * 6.
		

Crossrefs

Similar sequences: A000396, A002827, A007357, A054979, A322486, A324707.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; q[n_] := Times @@ f @@@ FactorInteger[n] == 2*n; Select[Range[10^6], q]
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) == 2*n;}
Previous Showing 21-30 of 35 results. Next