cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A362186 a(n) is the least number k such that the equation A323410(x) = k has exactly n solutions, or -1 if no such k exists.

Original entry on oeis.org

2, 0, 6, 10, 20, 31, 47, 53, 65, 77, 89, 113, 125, 119, 149, 173, 167, 179, 233, 279, 239, 209, 439, 293, 365, 299, 329, 359, 455, 521, 467, 389, 461, 419, 479, 773, 539, 509, 599, 845, 671, 791, 749, 719, 659, 629, 809, 1055, 881, 779, 899, 965, 929, 1121, 839, 1403
Offset: 0

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

Is there any n for which a(n) = -1?

Crossrefs

The unitary version of A063507.
Similar sequences: A007374, A361970.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 300}, solnum = Table[0, {n, 1, max}]; Do[If[(i = ucototient[k]) <= max, solnum[[i]]++], {k, 2, max^2}]; Join[{2, 0}, TakeWhile[FirstPosition[ solnum, #] & /@ Range[2, max] // Flatten, NumberQ]]]

Formula

A362181(a(n)) = n.

A066420 Least m such that card(invphi(phi(m)))=n.

Original entry on oeis.org

1, 3, 5, 15, 13, 51, 37, 41, 35, 65, 187, 397, 2269, 1059, 313, 73, 337, 247, 937, 185, 689, 1139, 2057, 403, 2827, 485, 323, 1321, 3697, 241, 769, 9001, 433, 7129, 4201, 527, 577, 1297, 1201, 15937, 3313, 3281, 3379, 949, 3121, 7519, 3889, 779, 1763
Offset: 2

Views

Author

Vladeta Jovovic, Dec 25 2001

Keywords

Crossrefs

Formula

a(n) = A049283(A007374(n)). - Max Alekseyev, Apr 12 2005

Extensions

More terms from Max Alekseyev, Apr 12 2005

A130669 Smallest k such that phi(x) = k has exactly n odd solutions.

Original entry on oeis.org

1, 6, 24, 60, 144, 72, 216, 480, 600, 240, 432, 1152, 1296, 1080, 4608, 2016, 720, 2520, 2400, 1440, 5184, 4032, 2880, 5280, 7776, 2160, 5760, 21840, 7560, 9600, 6720, 16560, 5040, 15552, 6480, 13440, 10800, 11520, 20736, 4320, 18144, 12096, 28512, 16800
Offset: 1

Views

Author

Franz Vrabec, Jun 27 2007

Keywords

Examples

			a(3) = 24 because there are 3 odd solutions (35, 39, 45) to phi(x) = 24 and for every k < 24 the number of odd solutions to phi(x) = k is unequal to 3.
		

Crossrefs

A378507 The smallest number k such that the equation phi(phi(x)) = k has exactly n solutions.

Original entry on oeis.org

10, 56, 6, 1, 84, 312, 2, 200, 464, 36, 108, 4, 12, 88, 816, 264, 440, 360, 552, 120, 224, 8, 3696, 1320, 928, 176, 624, 1472, 832, 5728, 24, 4560, 1080, 2000, 16, 2848, 72, 1312, 1872, 80, 1120, 216, 880, 336, 23360, 448, 3808, 10608, 648, 528, 352, 9280, 32
Offset: 2

Views

Author

Amiram Eldar, Nov 29 2024

Keywords

Comments

The smallest number k such that A378506(k) = n.
If phi(phi(x)) = k has a solution, then according to Carmichael's totient function conjecture there is at least one another number y != x such that phi(y) = phi(x) and then y is also a solution. Therefore, according to this conjecture, a(1) does not exist.

Crossrefs

Programs

  • Mathematica
    s[n_] := Sum[PhiMultiplicity[k], {k, PhiInverse[n]}]; seq[len_] := Module[{v = Table[0, {len+1}], c = 0, k = 1, ns}, While[c < len, ns = s[k]; If[0 < ns <= len + 1 && v[[ns]] == 0, v[[ns]] = k; c++]; k++]; Rest[v]]; seq[30] (* using David M. Bressoud's CNT.m *)
  • PARI
    s(n) = vecsum(apply(x -> invphiNum(x), invphi(n))); \\ using Max Alekseyev's invphi.gp
    lista(len) = {my(v = vector(len+1), c = 0, k = 1, ns); while(c < len, ns = s(k); if(ns > 0 && ns <= len + 1 && v[ns] == 0, c++; v[ns] = k); k++); vecextract(v,"^1");}

A378510 The least totient number k with exactly n solutions to the equation phi(x) = k, where all the solutions are nontotient numbers (A007617).

Original entry on oeis.org

30, 116, 42, 456, 780, 1140, 1368, 1380, 3420, 4356, 5104, 20196, 9396, 1980, 15876, 8316, 4860, 16380, 79464, 239976, 15720, 69300, 129960, 70000, 90360, 141680, 263160, 835380, 802296, 706680, 236808, 39960, 205800, 2898840, 3200904, 598920, 664440, 2723400
Offset: 2

Views

Author

Amiram Eldar, Nov 29 2024

Keywords

Comments

The least term k of A378509 such that A014197(k) = n.

Crossrefs

Programs

  • Mathematica
    seq[len_] := Module[{v = Table[0, {len+1}], c = 0, k = 2, s, ns}, While[c < len, s = PhiInverse[k]; ns = Length[s]; If[0 < ns <= len + 1 && AllTrue[s, PhiMultiplicity[#] == 0 &] && v[[ns]] == 0, v[[ns]] = k; c++]; k += 2]; Rest[v]]; seq[10] (* using David M. Bressoud's CNT.m *)
  • PARI
    lista(len) = {my(v = vector(len+1), c = 0, k = 2, s, ns, ans); while(c < len, s = invphi(k); ns = #s; ans = 1; for(i = 1, ns, if(istotient(s[i]), ans = 0; break)); if(ans && ns > 0 && ns <= len + 1 && v[ns] == 0, c++; v[ns] = k); k += 2); vecextract(v,"^1");} \\ using Max Alekseyev's invphi.gp

Formula

a(n) >= A007374(n).

A085758 Least m such that phi(x)=2m has exactly n solutions.

Original entry on oeis.org

5, 1, 2, 4, 6, 16, 18, 20, 12, 24, 80, 198, 1134, 352, 156, 36, 168, 108, 468, 72, 312, 528, 880, 180, 1280, 192, 144, 660, 1848, 120, 384, 4500, 216, 3564, 2100, 240, 288, 648, 600, 7968, 1656, 1536, 1620, 432, 1560, 3672, 1944, 360, 840, 2496, 8820, 1008, 576
Offset: 2

Views

Author

Lekraj Beedassy, Jul 22 2003

Keywords

Comments

Sequence refers to the rank of the first occurrence of n in A032446.

Examples

			a(0) = 7. Carmichael conjectured that a(1) doesn't exist.
		

Crossrefs

Cf. A032446.

Formula

a(n) = A007374(n)/2 for n > 2. - David Wasserman, Feb 09 2005

Extensions

More terms from David Wasserman, Feb 09 2005

A300911 a(n) is the smallest positive integer k such that psi(x) = k has exactly n solutions, where psi(x) = A001615(x).

Original entry on oeis.org

2, 1, 6, 84, 12, 24, 48, 168, 96, 72, 192, 144, 384, 672, 360, 960, 432, 288, 3648, 1080, 3600, 720, 2736, 1008, 576, 864, 11664, 6720, 7680, 1152, 7920, 6336, 2016, 1440, 3024, 1728, 2160, 14256, 5040, 2592, 2304, 13440, 9072, 10800, 43008, 26208, 24480, 4608, 2880, 10944, 6480
Offset: 0

Views

Author

Altug Alkan, Mar 15 2018

Keywords

Examples

			a(3) = 84 because psi(2^2*13) = psi(5*13) = psi(83) = 84 and 84 is the least number with this property.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n == 1, 1, n Times @@ (1 + 1/First /@ FactorInteger@n)]; t = Sort[Reverse /@ Tally[Array[psi, 50000]]]; L = {2}; Do[ If[t[[j, 1]] == Length@ L, AppendTo[L, t[[j, 2]]]], {j, Length@t}]; L (* Giovanni Resta, Mar 16 2018 *)
  • PARI
    {my(N=5*10^4, c=vectorsmall(N), i); A300911=List(); for(n=1,N,(i=A001615(n))>N||c[i]++); for(n=1,oo, for(i=1,N, c[i]==n && listput(A300911,i) && next(2)); break)} \\ M. F. Hasler, Mar 18 2018

A362489 a(n) is the least number k such that the equation iphi(x) = k has exactly 2*n solutions, or -1 if no such k exists, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

5, 1, 6, 12, 36, 24, 396, 48, 216, 96, 528, 144, 384, 2784, 432, 240, 1296, 288, 1584, 1800, 480, 1680, 1080, 864, 576, 3240, 2016, 960, 6624, 720, 1152, 7776, 12000, 8448, 5280, 1728, 10752, 2304, 4032, 4800, 6048, 3840, 2160, 5184, 4608, 6336, 1440, 10560, 29568
Offset: 0

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Comments

a(n) is the least number k such that A362485(k) = 2*n. Odd values of A362485 are impossible.
Is there any n for which a(n) = -1?

Crossrefs

Similar sequences: A007374, A063507, A361970, A362186.

Programs

  • Mathematica
    solnum[n_] := Length[invIPhi[n]]; seq[len_, kmax_] := Module[{s = Table[-1, {len}], c = 0, k = 1, ind}, While[k < kmax && c < len, ind = solnum[k]/2 + 1; If[ind <= len && s[[ind]] < 0, c++; s[[ind]] = k]; k++]; s]; seq[50, 10^5] (* using the function invIPhi from A362484 *)
Previous Showing 11-18 of 18 results.