cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A354384 Difference sequence of A356133.

Original entry on oeis.org

2, 3, 4, 2, 4, 3, 2, 3, 4, 3, 2, 4, 2, 3, 4, 2, 4, 3, 2, 4, 2, 3, 4, 3, 2, 3, 4, 2, 4, 3, 2, 3, 4, 3, 2, 4, 2, 3, 4, 3, 2, 3, 4, 2, 4, 3, 2, 4, 2, 3, 4, 2, 4, 3, 2, 3, 4, 3, 2, 4, 2, 3, 4, 2, 4, 3, 2, 4, 2, 3, 4, 3, 2, 3, 4, 2, 4, 3, 2, 4, 2, 3, 4, 2, 4, 3
Offset: 1

Views

Author

Clark Kimberling, Aug 04 2022

Keywords

Crossrefs

Cf. A026430, A356133, A091855 (positions of 2), A036554 (positions of 3), A091855 (positions of 4).

Programs

  • Mathematica
    u = Accumulate[1 + ThueMorse /@ Range[0, 200]]  (* A026430 *)
    v = Complement[Range[Max[u]], u];  (* A356133 *)
    Differences[v] (* A354384 *)

Formula

a(n) = A007413(n) + 1.
a(n) = A036580(n) + 2.

A173209 Partial sums of A000069.

Original entry on oeis.org

1, 3, 7, 14, 22, 33, 46, 60, 76, 95, 116, 138, 163, 189, 217, 248, 280, 315, 352, 390, 431, 473, 517, 564, 613, 663, 715, 770, 826, 885, 946, 1008, 1072, 1139, 1208, 1278, 1351, 1425, 1501, 1580, 1661, 1743, 1827, 1914, 2002, 2093, 2186, 2280, 2377, 2475, 2575
Offset: 1

Views

Author

Jonathan Vos Post, Feb 12 2010

Keywords

Comments

Partial sums of odious numbers. Second differences give A007413. The subsequence of prime partial sums of odious numbers begins: 3, 7, 163, 431, 613, 2377, 3691, which is a subsequence of A027697. The subsequence of odious partial sums of odious numbers begins: 1, 7, 14, 22, 76, 138, 217, 280, 352, 431, 517, 613, 770, 885.

Examples

			a(65) = 1 + 2 + 4 + 7 + 8 + 11 + 13 + 14 + 16 + 19 + 21 + 22 + 25 + 26 + 28 + 31 + 32 + 35 + 37 + 38 + 41 + 42 + 44 + 47 + 49 + 50 + 52 + 55 + 56 + 59 + 61 + 62 + 64 + 67 + 69 + 70 + 73 + 74 + 76 + 79 + 81 + 82 + 84 + 87 + 88 + 91 + 93 + 94 + 97 + 98 + 100 + 103 + 104 + 107 + 109 + 110 + 112 + 115 + 117 + 118 + 121 + 122 + 124 + 127 + 128.
		

Crossrefs

Programs

Formula

a(n) = SUM[i=1..n] A000069(i) = SUM[i=1..n] {i such that A010060(i)=1}.
a(n) = n^2 - n/2 + O(1). - Charles R Greathouse IV, Mar 22 2013

A185311 Keränen's abelian squarefree endomorphism of size 85 on the symbols {1,2,3,4}.

Original entry on oeis.org

1, 2, 3, 1, 3, 4, 3, 2, 3, 4, 3, 1, 4, 3, 4, 2, 4, 1, 2, 1, 3, 1, 2, 1, 4, 2, 1, 2, 3, 2, 4, 2, 3, 2, 1, 3, 2, 3, 4, 3, 1, 3, 2, 1, 2, 4, 1, 2, 1, 3, 1, 4, 3, 2, 3, 4, 3, 1, 3, 4, 2, 3, 2, 1, 3, 2, 3, 4, 3, 1, 3, 4, 3, 2, 4, 3, 4, 1, 4, 2, 4, 3, 2, 3, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2012

Keywords

References

  • V. Keränen. Abelian squares are avoidable on 4 letters. In W. Kuich, editor, Proc. ICALP '92, Lecture Notes in Comp. Sci., 623:4152. Springer-Verlag, Berlin, 1992.
  • V. Keränen. Mathematica in research of avoidable patterns in strings, In V. Keränen and P. Mitic, editors, Mathematics with Vision, Proc. First International Mathematica Symposium (IMS '95, Southampton, England), 259266. Computational Mechanics Publications, 1995.
  • V. Keränen. The avoidability of regularities in strings (in Finnish). Arkhimedes, 47(1):7179, 1995.
  • V. Keränen. On abelian repetition-free words. In V. Demidov, editor, Proc. IAS '96, 814. Murmansk State Pedagogical Institute, Murmansk, 1996.
  • V. Keränen. Repetition-free strings and computer algebra (in Finnish). In C. Gefwert and P. Orponen and J. Seppänen, editors, Logic, Mathematics and the Computer, Proc. Finnish Artificial Intelligence Society, 14:250257. Hakapaino, Helsinki, 1996.
  • T. Laakso, Musical rendering of an infinite repetition-free string. In C. Gefwert and P. Orponen and J. Seppänen, editors, Logic, Mathematics and the Computer, Proc. Finnish Artificial Intelligence Society, 14:292-297. Hakapaino, Helsinki, 1996.

Crossrefs

A317189 A morphic sequence related to the ternary Thue-Morse sequence.

Original entry on oeis.org

1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[Flatten[# /. {1 -> {2, 0}, 2 -> {1}, 0 -> {2, 1, 0}}] &, {2}, 9 (* must be an odd integer*)] (* Robert G. Wilson v, Jul 30 2018 *)

Formula

a(n) = A036577(n), n>0, a(0) = 1. - Michel Dekking, Oct 15 2019

Extensions

More terms from Robert G. Wilson v, Jul 30 2018
Previous Showing 21-24 of 24 results.