cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A071684 Number of plane trees with n edges and having an odd number of leaves.

Original entry on oeis.org

1, 1, 2, 7, 22, 66, 212, 715, 2438, 8398, 29372, 104006, 371516, 1337220, 4847208, 17678835, 64823110, 238819350, 883629164, 3282060210, 12233141908, 45741281820, 171529777432, 644952073662, 2430973304732, 9183676536076
Offset: 1

Views

Author

Sen-peng Eu, Jun 23 2002

Keywords

Comments

Narayana transform (A001263) of [1, 0, 1, 0, 1, 0, 1, ...]. Example: a(4) = 7 = (1, 6, 6, 1) dot (1, 0, 1, 0) = (1 + 0 + 6 + 0). - Gary W. Adamson, Jan 04 2008

Examples

			a(3)=2 because among the 5 plane 3-trees there are 2 trees with odd number of leaves; a(4)=7 because among the 14 plane 4-trees there are 7 trees with odd number of leaves.
		

Crossrefs

a(n) + A071688 = A000108: Catalan numbers.

Programs

  • Maple
    G:=((1+4*x^2)^(1/2)-(1-4*x)^(1/2)-2*x)/4/x: Gser:=series(G,x=0,30): seq(coeff(Gser,x,n),n=1..26); # Emeric Deutsch, Feb 17 2007
  • Mathematica
    a[n_] := If[EvenQ[n], Binomial[2n, n]/(2n + 2), Binomial[2n, n]/(2n + 2) - (-1)^((n + 1)/2)Binomial[n - 1, (n - 1)/2]/(n + 1)]
    Table[(CatalanNumber[n] + 2^n Binomial[1/2, (n + 1)/2])/2, {n, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)

Formula

a(2*n) = (1/(4*n + 2))*binomial(4*n, 2*n);
a(2*n-1) = (1/(4*n))*binomial(4*n-2, 2*n-1) - (-1)^n*(1/(2*n))*binomial(2*n-2, n-1), with n>0.
G.f.: (1/4)*((1+4*x^2)^(1/2) - (1-4*x)^(1/2)-2*x)/x. - Vladeta Jovovic, Apr 19 2003
a(0)=0; a(n) = Sum_{k = 0..floor(n/2)} (1/n)*C(n,2*k+1)*C(n,2*k) for n>0. - Paul Barry, Jan 25 2007
a(n) = Sum_{k=1..n} (1/n)*C(n,k)*C(n,k-1)*(1-(-1)^k)/2. - Paul Barry, Dec 16 2008
Conjecture: n*(n+1)*(10*n-37)*a(n) + 2*n*(5*n^2-42*n+91)*a(n-1) + 4*(-40*n^3+270*n^2-560*n+357)*a(n-2) + 8*(n-3)*(5*n^2-42*n+91)*a(n-3) - 16*(n-4)*(25*n-51)*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jul 05 2018
a(n) = (A000108(n) + 2^n * binomial(1/2, (n+1)/2))/2. - Vladimir Reshetnikov, Oct 03 2016
32*n*(2*n+1)*a(n) - 48*(n+2)*(n+1)*a(n+1) + 8*(n^2-n-9)*a(n+2) - 4*(2*n^2+10*n+9)*a(n+3) - 2*(n+5)*(n+6)*a(n+4) + (n+5)*(n+6)*a(n+5) = 0. - Robert Israel, Jul 05 2018

Extensions

Edited by Robert G. Wilson v, Jun 25 2002

A072506 Triangle giving T(n,m) = number of necklaces of two colors with 2n beads of which m=1..n are black.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 7, 10, 1, 5, 12, 22, 26, 1, 6, 19, 43, 66, 80, 1, 7, 26, 73, 143, 217, 246, 1, 8, 35, 116, 273, 504, 715, 810, 1, 9, 46, 172, 476, 1038, 1768, 2438, 2704, 1, 10, 57, 245, 776, 1944, 3876, 6310, 8398, 9252, 1, 11, 70, 335, 1197, 3399, 7752
Offset: 1

Views

Author

Wouter Meeussen, Aug 03 2002

Keywords

Comments

Left half of even rows of triangle A047996 (with the leftmost edge discarded).

Crossrefs

Penultimate entries give binary necklaces of n-1 black beads and n+1 white beads, presumably A007595, antepenultimate entries give binary necklaces of n-2 black beads and n+2 white beads, presumably A003444.

Programs

  • Mathematica
    Table[(Plus@@(EulerPhi[ # ]Binomial[2n/#, m/# ] &)/@Intersection[Divisors[2n], Divisors[m]])/(2n), {n, 13}, {m, n}]

Formula

(1/(2n)) Sum_{d |(2n, m)} phi(d)*binomial(2n/d, m/d)

A073281 Self-inverse permutation of natural numbers induced by the composition of the Catalan bijections A072796 and A073269.

Original entry on oeis.org

0, 1, 3, 2, 7, 5, 8, 4, 6, 17, 18, 12, 11, 15, 20, 13, 21, 9, 10, 22, 14, 16, 19, 45, 46, 48, 49, 50, 31, 32, 30, 28, 29, 40, 39, 43, 52, 54, 55, 34, 33, 41, 57, 35, 58, 23, 24, 59, 25, 26, 27, 61, 36, 62, 37, 38, 63, 42, 44, 47, 64, 51, 53, 56, 60, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Crossrefs

Occurs for first time in A073200 as row 15. This is a conjugate of A069770, so the fixed element and the cycle counts are same as for A069770: "Aerated Catalan numbers" and A007595.

Formula

A132892 Square array T(m,n) read by antidiagonals; T(m,n) is the number of equivalence classes in the set of sequences of n nonnegative integers that sum to m, generated by the equivalence relation defined in the following manner: we write a sequence in the form a[1]0a[2]0...0a[p], where each a[i] is a (possibly empty) sequence of positive integers; two sequences in this form, a[1]0a[2]0...0a[p] and b[1]0b[2]0...0b[q] are said to be equivalent if p=q and b[1],b[2],...,b[q] is a cyclic permutation of a[1],a[2],...a[p].

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 3, 1, 1, 5, 9, 7, 4, 1, 1, 6, 13, 14, 10, 4, 1, 1, 7, 19, 25, 22, 12, 5, 1, 1, 8, 25, 41, 42, 30, 15, 5, 1, 1, 9, 33, 63, 79, 66, 43, 19, 6, 1, 1, 10, 41, 92, 131, 132, 99, 55, 22, 6, 1, 1, 11, 51, 129, 213, 245, 217, 143, 73, 26, 7, 1, 1, 12, 61, 175, 325, 428, 429, 335, 201, 91, 31, 7, 1
Offset: 1

Views

Author

Emeric Deutsch and Ira M. Gessel, Oct 02 2007

Keywords

Comments

T(n,n) = A000108(n) (the Catalan numbers; see R. P. Stanley, Catalan addendum, problem starting "Equivalence classes of the equivalence relation ..."). T(m,m+1) = A007595(m+1); T(m,m+2) = A003441(m+1); T(m,m+3) = A003444(m+3); T(n+2,n) = A001453(n+1) (Catalan numbers - 1); T(m,1)=1; T(m,2)=m; T(m,3) = A080827(m) = A099392(m+1); T(m,4) = A004006(m).

Examples

			T(2,4) = 3 because we have {2000, 0200, 0020, 0002}, {1100, 0110, 0011} and {1010, 0101, 1001}.
T(4,2) = 4 because we have {40, 04}, {31}, {13} and {22}.
The square array starts:
  1....1.....1.....1......1.....1.....1...
  1....2.....3.....3......4.....4.....5...
  1....3.....5.....7.....10....12....15...
  1....4.....9....14.....22....30....43...
  1....5....13....25.....42....66....99...
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(m,n) local r, div, N: r:=igcd(m,n+1): div:=divisors(r): N:=nops(div): (sum(phi(div[j])*(binomial((m+n+1)/div[j]-1,(n+1)/div[j]-1) -binomial(m/div[j]-1,(n+1)/div[j]-1)),j=1..N))/(n+1) end proc: for m to 12 do seq(T(m, n),n=1..12) end do; # yields the upper left 12 by 12 block of the infinite matrix T(m,n)
    # second Maple program:
    T:= proc(m, n) uses numtheory; (C-> add(phi(d)*(C((m+n+1)/d-1, (n+1)/d-1)
          -C(m/d-1, (n+1)/d-1))/(n+1), d=divisors(igcd(m, n+1))))(binomial)
        end:
    seq(seq(T(1+d-n, n), n=1..d), d=1..14);  # Alois P. Heinz, Jan 28 2025
  • Mathematica
    T[m_, n_] := Module[{r, div, N}, r = GCD[m, n + 1]; div = Divisors[r]; N = Length[div]; (Sum[EulerPhi[div[[j]]]*(Binomial[(m + n + 1)/div[[j]] - 1, (n + 1)/div[[j]] - 1] - Binomial[m/div[[j]] - 1, (n + 1)/div[[j]] - 1]), {j, 1, N}])/(n + 1)];
    Table[T[m - n + 1, n], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Sep 01 2024, after Maple program *)

Formula

T(m,n) = Sum_{d | gcd(m,n+1)} phi(d)*(C((m+n+1)/d-1, (n+1)/d-1) - C(m/d-1, (n+1)/d-1))/(n+1). [corrected by Jason Yuen, Jan 28 2025]

A183759 Unlabeled super-Catalan numbers: patterns of nonintersecting chords joining unlabeled points on a circle, triangle decomposed by number of chords.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 2, 7, 7, 1, 3, 15, 33, 22, 1, 3, 24, 94, 136, 66, 1, 4, 41, 218, 525, 552, 217, 1, 4, 57, 440, 1517, 2673, 2233, 715, 1, 5, 86, 804, 3748, 9439, 12917, 8807, 2438
Offset: 1

Views

Author

David Scambler, Jan 06 2011

Keywords

Comments

Decomposition of A183757 by number of chords (pairs of parentheses). Row sums are A183757. See A183757 for description.
Triangle is
1
1 1
1 2 3
1 2 7 7
1 3 15 33 22
1 3 24 94 136 66
...
Right diagonal is apparently A007595.

Crossrefs

Decomposition of A183757.
Cf. analogous decomposition of super-Catalan numbers in triangle A033282.

A342770 T(n,k) is the number of rooted plane binary forests with n nodes and k trees: triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 3, 0, 1, 0, 1, 0, 5, 0, 3, 0, 1, 0, 1, 0, 0, 7, 0, 3, 0, 1, 0, 1, 0, 14, 0, 8, 0, 3, 0, 1, 0, 1, 0, 0, 22, 0, 8, 0, 3, 0, 1, 0, 1, 0, 42, 0, 24, 0, 8, 0, 3, 0, 1, 0, 1, 0, 0, 66, 0, 25, 0, 8, 0
Offset: 0

Views

Author

R. J. Mathar, Mar 21 2021

Keywords

Comments

Multiset transform of A126120.

Examples

			See A222006 showing T(6,k).
The triangle starts (n>=0, 0<=k<=n):
  1
  0   1
  0   0   1
  0   1   0   1
  0   0   1   0   1
  0   2   0   1   0   1
  0   0   3   0   1   0   1
  0   5   0   3   0   1   0   1
  0   0   7   0   3   0   1   0   1
  0  14   0   8   0   3   0   1   0   1
  0   0  22   0   8   0   3   0   1   0   1
  0  42   0  24   0   8   0   3   0   1   0   1
  0   0  66   0  25   0   8   0   3   0   1   0   1
  0 132   0  74   0  25   0   8   0   3   0   1   0   1
  0   0 217   0  76   0  25   0   8   0   3   0   1   0   1
		

Crossrefs

Cf. A222006 (row sums), A126120 (column k=1), A007595 (k=2), A046342 (k=3), A088327 (limit n->oo, row reverse).
Previous Showing 11-16 of 16 results.