cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A210253 Number of distinct residues of all factorials mod 2^n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 8, 9, 10, 11, 13, 14, 16, 16, 16, 17, 18, 19, 20, 22, 24, 24, 25, 26, 27, 29, 30, 32, 32, 32, 32, 33, 34, 35, 36, 37, 40, 40, 41, 42, 43, 45, 46, 48, 48, 48, 49, 50, 51, 52, 54, 56, 56, 57, 58, 59, 61, 62, 64, 64, 64, 64, 64, 65, 66, 67
Offset: 0

Views

Author

Vladimir Shevelev, Mar 19 2012

Keywords

Comments

Theorem. For n>=1, a(n) = A007843(n) - A210255(n).

Examples

			Let n=2. We have modulo 4: 0!=1!==1, 2!==3!==2, for n>=4, n!==0. Thus the distinct residues are 0,1,2. Therefore, a(2) = 3.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local p, m, i, s;
          p:= 2^n;
          m:= 1;
          s:= {};
          for i to p while m<>0 do m:= m*i mod p; s:=s union {m} od;
          nops(s)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 20 2012
  • Mathematica
    a[n_] := Module[{p = 2^n, m = 1, i, s = {}}, For[i = 1, i <= p && m != 0, i++, m = Mod[m i, p]; s = Union[s, {m}]]; Length[s]];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)

A048842 Least positive integer k for which 13^n divides k!.

Original entry on oeis.org

1, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 156, 169, 169, 182, 195, 208, 221, 234, 247, 260, 273, 286, 299, 312, 325, 338, 338, 351, 364, 377, 390, 403, 416, 429, 442, 455, 468, 481, 494, 507, 507, 520, 533, 546, 559, 572, 585, 598
Offset: 0

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Crossrefs

See A007843 for more information.

Programs

  • PARI
    a(n) = {k = 1; ok = 0; until (ok, if (k! % 13^n == 0, ok=1, k++);); return (k);} \\ Michel Marcus, Jun 30 2013

A048843 Least positive integer k for which 17^n divides k!.

Original entry on oeis.org

1, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 272, 289, 289, 306, 323, 340, 357, 374, 391, 408, 425, 442, 459, 476, 493, 510, 527, 544, 561, 578, 578, 595, 612, 629, 646, 663, 680, 697, 714, 731, 748, 765, 782, 799
Offset: 0

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Crossrefs

See A007843 for more information.

A048844 Least positive integer k for which 19^n divides k!.

Original entry on oeis.org

1, 19, 38, 57, 76, 95, 114, 133, 152, 171, 190, 209, 228, 247, 266, 285, 304, 323, 342, 361, 361, 380, 399, 418, 437, 456, 475, 494, 513, 532, 551, 570, 589, 608, 627, 646, 665, 684, 703, 722, 722, 741, 760, 779, 798, 817, 836, 855, 874, 893
Offset: 0

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Crossrefs

See A007843 for more information.

A048845 Least positive integer k for which 23^n divides k!.

Original entry on oeis.org

1, 23, 46, 69, 92, 115, 138, 161, 184, 207, 230, 253, 276, 299, 322, 345, 368, 391, 414, 437, 460, 483, 506, 529, 529, 552, 575, 598, 621, 644, 667, 690, 713, 736, 759, 782, 805, 828, 851, 874, 897, 920, 943, 966, 989, 1012, 1035, 1058
Offset: 0

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Crossrefs

See A007843 for more information.

A210337 Sum of distinct residues of all factorials mod 2^n.

Original entry on oeis.org

0, 1, 3, 9, 17, 49, 153, 281, 665, 1433, 3225, 7705, 17945, 47641, 64025, 129561, 293401, 752153, 1341977, 2914841, 6421017, 14547481, 33421849, 71170585, 138279449, 247331353, 645790233, 1182661145, 2558392857, 5779618329, 11685198361, 23496358425
Offset: 0

Views

Author

Vladimir Shevelev, Mar 20 2012

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) local p, m, i, s;
          p:= 2^n;
          m:= 1;
          s:= {};
          for i to p while m<>0 do m:= m*i mod p; s:=s union {m} od;
          add(i, i=s)
        end:
    seq (a(n), n=0..40);  # Alois P. Heinz, Mar 20 2012
  • Mathematica
    a[n_] := Module[{k=0, s={}},  While[(r = Mod[k!, 2^n]) > 0, k++; AppendTo[s,r]]; Total@Union@s]; Array[a, 32, 0] (* Amiram Eldar, Dec 15 2018 *)
  • PARI
    nbf(n) = my(k=1); while(k! % 2^n, k++); k; \\ A007843
    a(n) = my(nb=nbf(n)); vecsum(Set(vector(nb, k, k! % 2^n))); \\ Michel Marcus, Dec 15 2018

Extensions

More terms from Alois P. Heinz, Mar 20 2012
Previous Showing 11-16 of 16 results.