cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A251610 Determinants of the spiral knots S(4,k,(1,1,1)).

Original entry on oeis.org

1, 4, 3, 0, 5, 12, 7, 0, 9, 20, 11, 0, 13, 28, 15, 0, 17, 36, 19, 0, 21, 44, 23, 0, 25, 52, 27, 0, 29, 60, 31, 0, 33, 68, 35, 0, 37, 76, 39, 0, 41, 84, 43, 0, 45, 92, 47, 0, 49, 100, 51, 0, 53, 108, 55, 0, 57, 116, 59, 0, 61, 124, 63, 0, 65, 132, 67, 0, 69, 140, 71, 0, 73, 148, 75, 0, 77, 156, 79
Offset: 1

Views

Author

Ryan Stees, Dec 05 2014

Keywords

Comments

a(k) = det(S(4,k,(1,1,1))). These knots are also the torus knots T(4,k).

Examples

			For k=3, b(3)=sqrt(2)b(2)-b(1)=2-1=1, so det(S(4,3,(1,1,1)))=3*1^2=3.
		

Crossrefs

Product of terms of A000027 and A007877.

Programs

  • PARI
    B=vector(166); B[1]=1; B[2]=s;  \\ s := sqrt(2)
    for(n=3,#B,B[n]=s*B[n-1]-B[n-2]);
    B=substpol(B,s^2,2);
    A=vector(#B,n,n*B[n]^2);
    A=substpol(A,s^2,2)
    \\ Joerg Arndt, Dec 06 2014
    
  • PARI
    Vec(x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, Dec 07 2014

Formula

a(k) = det(S(4,k,(1,1,1))) = k*(b(k))^2, where b(1)=1, b(2)=sqrt(2), b(k)=sqrt(2)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2).
From Colin Barker, Dec 06 2014: (Start)
b(k) = ((2-(-i)^k-i^k)*k)/2 where i=sqrt(-1).
b(k) = 2*b(k-1)-3*b(k-2)+4*b(k-3)-3*b(k-4)+2*b(k-5)-b(k-6).
G.f.: x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2).
(End)

Extensions

More terms from Joerg Arndt, Dec 06 2014

A373005 Array read by ascending antidiagonals: A(n,k) is the maximum possible cardinality of a set of points of diameter at most k-1 in {0,1}^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 2, 0, 0, 1, 2, 3, 2, 1, 0, 1, 2, 4, 4, 2, 2, 0, 1, 2, 5, 6, 4, 2, 1, 0, 1, 2, 6, 8, 7, 4, 2, 0, 0, 1, 2, 7, 10, 11, 8, 4, 2, 1, 0, 1, 2, 8, 12, 16, 14, 8, 4, 2, 2, 0, 1, 2, 9, 14, 22, 22, 15, 8, 4, 2, 1, 0, 1, 2, 10, 16, 29, 32, 26, 16, 8, 4, 2, 0
Offset: 0

Views

Author

Stefano Spezia, May 19 2024

Keywords

Comments

A(n,k) is also the size of the Hamming ball in {0,1}^n of radius (k-1)/2 if k is odd and of the union of two Hamming balls in {0,1}^n of radius k/2-1 whose centers are of Hamming distance 1 if k is even.

Examples

			The array begins:
  1, 1, 2, 1,  0,  1,  2,  1, ...
  0, 1, 2, 2,  2,  2,  2,  2, ...
  0, 1, 2, 3,  4,  4,  4,  4, ...
  0, 1, 2, 4,  6,  7,  8,  8, ...
  0, 1, 2, 5,  8, 11, 14, 15, ...
  0, 1, 2, 6, 10, 16, 22, 26, ...
  0, 1, 2, 7, 12, 22, 32, 42, ...
  0, 1, 2, 8, 14, 29, 44, 64, ...
  ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (k=1), A000124 (k=5), A000125 (k=7), A005843 (k=4), A006261 (k=11), A007395 (k=2), A008859 (k=13), A011782 (main diagonal), A014206, A046127 (k=8), A059173, A059174, A130130 (n=1), A158411 (n=2), A373006 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=If[OddQ[k],Sum[Binomial[n,i],{i,0,(k-1)/2}], Binomial[n-1,k/2-1]+Sum[Binomial[n,i],{i,0,k/2-1}]]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(n,k) = Sum_{i=0..(k-1)/2} binomial(n,i) if k is odd;
A(n,k) = binomial(n-1,k/2-1) + Sum_{i=0..k/2-1} binomial(n,i) if k is even.
A(n,3) = n+1.
A(n,6) = A014206(n-1).
A(n,9) = A000127(n+1).
A(n,10) = A059173(n) for n > 0.
A(n,12) = A059174(n) for n > 0.
A(0,k) = A007877(k) for k > 0.

A204040 Triangle T(n,k), read by rows, given by (0, 2, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 4, 1, 0, -4, 4, 6, 1, 0, -4, -8, 12, 8, 1, 0, 4, -24, -4, 24, 10, 1, 0, 12, -8, -60, 16, 40, 12, 1, 0, 4, 56, -84, -96, 60, 60, 14, 1, 0, -20, 88, 84, -272, -100, 136, 84, 16, 1, 0, -28, -40
Offset: 0

Views

Author

Philippe Deléham, Jan 27 2012

Keywords

Comments

Antidiagonal sums : periodic sequence 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, ... (see A007877 or A098178).Riordan array (1, x*(1+x)/(1-x+2*x^2)) .

Examples

			Triangle begins :
1
0, 1
0, 2, 1
0, 0, 4, 1
0, -4, 4, 6, 1
0, -4, -8, 12, 8, 1
0, 4, -24, -4, 24, 10, 1
0, 12, -8, -60, 16, 40, 12, 1
0, 4, 56, -84, -96, 60, 60, 14, 1
0, -20, 88, 84, -272, -100, 136, 84, 16, 1
		

Crossrefs

Cf. A005408.

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2, k-1) - 2*T(n-2,k).
G.f.: (1-x+2*x^2)/(1-(1+y)*x + (2-y)*x^2).
T(n,n) = n = A000012(n), T(n+1,n) = 2n = A005843(n), T(n+2,n) = A046092(n-1) for n>0, T(n+1,1) = A078050(n)*(-1)^n.
Sum_{k, 0<=k<=n} T(n,k) = A060747(n) = A005408(n-1).

A257931 Period 24 sequence [0, 1, 1, 0, -2, -1, 0, 1, 0, 0, -1, -1, 0, 1, 1, 0, 0, -1, 0, 1, 2, 0, -1, -1].

Original entry on oeis.org

0, 1, 1, 0, -2, -1, 0, 1, 0, 0, -1, -1, 0, 1, 1, 0, 0, -1, 0, 1, 2, 0, -1, -1, 0, 1, 1, 0, -2, -1, 0, 1, 0, 0, -1, -1, 0, 1, 1, 0, 0, -1, 0, 1, 2, 0, -1, -1, 0, 1, 1, 0, -2, -1, 0, 1, 0, 0, -1, -1, 0, 1, 1, 0, 0, -1, 0, 1, 2, 0, -1, -1, 0, 1, 1, 0, -2, -1, 0
Offset: 0

Views

Author

Michael Somos, May 13 2015

Keywords

Examples

			G.f. = x + x^2 - 2*x^4 - x^5 + x^7 - x^10 - x^11 + x^13 + x^14 - x^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := (-1)^Quotient[ n, 3] Sign[Mod[n, 3]] - If[ Mod[n, 4] > 0, 0, (-1)^Quotient[ n, 12] Sign[Mod[n, 12]]];
  • PARI
    {a(n) = (-1)^(n\3) * (n%3>0) - if( n%4, 0, (-1)^(n\12) * (n%12>0))};
    
  • PARI
    {a(n) = my(m = abs(n)); sign(n) * polcoeff( x * (1 - x^3) * (1 - x^5) / ((1 - x + x^2) * (1 - x^4 + x^8)) + x * O(x^m), m)};

Formula

Euler transform of length 24 sequence [1, -1, -2, 1, -1, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1].
a(n) is multiplicative with a(2) = 1, a(4) = -2, a(2^e) = 0 if e > 2, a(3^e) = 0^e, a(p^e) = 1, if p == 1 (mod 6), a(p^e) = (-1)^e if p == 5 (mod 6).
a(n) = -a(-n) = a(n+24), a(n) + a(n+12) = 2 * A128834(n) for all n in Z.
a(2*n + 1) = a(4*n + 2) = a(8*n + 1) = a(8*n + 7) = A057078(n). a(3*n) = a(8*n) = 0. a(4*n + 1) = a(8*n + 2) = -a(8*n + 5) = A049347(n-1). a(6*n + 1) = -a(6*n + 5) = 1. a(6*n + 2) = A007877(n-1).
G.f.: f(x) - f(x^4) where f(x) := x / (1 - x + x^2).
G.f.: x * (1 - x^3) * (1 - x^5) / ((1 - x + x^2) * (1 - x^4 + x^8)).
Previous Showing 21-24 of 24 results.