cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A354795 Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -3, 1, 0, -2, -1, -6, 1, 0, -6, 0, 5, -10, 1, 0, -24, 4, 15, 25, -15, 1, 0, -120, 28, 49, 35, 70, -21, 1, 0, -720, 188, 196, 49, 0, 154, -28, 1, 0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1, 0, -40320, 11016, 5340, -820, -1365, -987, -1050, 510, -45, 1
Offset: 0

Views

Author

Peter Luschny, Jun 09 2022

Keywords

Comments

The triangle is the matrix inverse of the Bell transform of n^n (A354794).
The numbers (-1)^(n-k)*T(n, k) are known as the Lehmer-Comtet numbers of 1st kind (A008296).
The function cfact is the 'complementary factorial' (name is ad hoc) and written \hat{!} in TeX mathmode. 1/(cfact(-n) * cfact(n)) = signum(-n) * n for n != 0. It is related to the Roman factorial (A159333). The Bell transform of the factorial are the Stirling cycle numbers (A132393).

Examples

			Triangle T(n, k) begins:
[0] [1]
[1] [0,     1]
[2] [0,    -1,    1]
[3] [0,    -1,   -3,   1]
[4] [0,    -2,   -1,  -6,   1]
[5] [0,    -6,    0,   5, -10,    1]
[6] [0,   -24,    4,  15,  25,  -15,    1]
[7] [0,  -120,   28,  49,  35,   70,  -21,   1]
[8] [0,  -720,  188, 196,  49,    0,  154, -28,   1]
[9] [0, -5040, 1368, 944,   0, -231, -252, 294, -36, 1]
		

References

  • Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.

Crossrefs

Cf. A354794 (matrix inverse), A176118 (row sums), A005727 (alternating row sums), A045406 (column 2), A347276 (column 3), A345651 (column 4), A298511 (central), A008296 (variant), A159333, A264428, A159075, A006963, A354796.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    cfact := n -> ifelse(n = 0, 1, -(n - 1)!): BellMatrix(cfact, 10);
    # Alternative:
    t := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = n then 1 else (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) fi end:
    T := (n, k) -> (-1)^(n-k)*t(n, k):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
    # Using the e.g.f.:
    egf := (1 - x)^(t*(x - 1)):
    ser := series(egf, x, 11): coeffx := n -> coeff(ser, x, n):
    row := n -> seq(n!*coeff(coeffx(n), t, k), k=0..n):
    seq(print(row(n)), n = 0..9);
  • Mathematica
    cfact[n_] := If[n == 0, 1, -(n - 1)!];
    R := Range[0, 10]; cf := Table[cfact[n], {n, R}];
    Table[BellY[n, k, cf], {n, R}, {k, 0, n}] // Flatten

Formula

T(n, k) = n!*[t^k][x^n] (1 - x)^(t*(x - 1)).
T(n, k) = Sum_{j=k..n} (-1)^(n-k)*binomial(j, k)*k^(j-k)*Stirling1(n, j).
T(n, k) = Bell_{n, k}(a), where Bell_{n, k} is the partial Bell polynomial evaluated over the sequence a = {cfact(m) | m >= 0}, (see Mathematica).
T(n, k) = (-1)^(n-k)*t(n, k) where t(n, n) = 1 and t(n, k) = (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) for k > 0 and n > 0.
Let s(n) = (-1)^n*Sum_{k=1..n} (k-1)^(k-1)*T(n, k) for n >= 0, then s = A159075.
Sum_{k=1..n} (k + x)^(k-1)*T(n, k) = binomial(n + x - 1, n-1)*(n-1)! for n >= 1. Note that for x = k this is A354796(n, k) for 0 <= k <= n and implies in particular for x = n >= 1 the identity Sum_{k=1..n} (k + n)^(k - 1)*T(n, k) = Gamma(2*n)/n! = A006963(n+1).
E.g.f. of column k >= 0: ((1 - t) * log(1 - t))^k / ((-1)^k * k!). - Werner Schulte, Jun 14 2022

A185164 Coefficients of a set of polynomials associated with the derivatives of x^x.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 24, 40, 15, 120, 196, 105, 720, 1148, 700, 105, 5040, 7848, 5068, 1260, 40320, 61416, 40740, 12600, 945, 362880, 541728, 363660, 126280, 17325, 3628800, 5319072, 3584856, 1332100, 242550, 10395, 39916800, 57545280, 38764440, 15020720, 3213210, 270270
Offset: 2

Views

Author

Peter Bala, Mar 12 2012

Keywords

Comments

Gould shows that the derivatives of x^x are given by (d/dx)^n(x^x) = (x^x)*Sum_{k = 0..n} (-1)^k*binomial(n,k)*(1 + log(x))^(n-k)*x^(-k)*R(k,x), where R(n,x) is a polynomial in x of degree floor(n/2). The first few values are R(0,x) = 1, R(1,x) = 0, R(2,x) = x, R(3,x) = x and R(4,x) = 2*x + 3*x^2. The coefficients of these polynomials are listed in the table for n >= 2. Gould gives an explicit formula for R(n,x) as a triple sum, and also an expression in terms of the Comtet numbers A008296.
This table read by diagonals gives A075856.

Examples

			Triangle begins
n\k.|.....1.....2.....3.....4
= = = = = = = = = = = = = = =
..2.|.....1
..3.|.....1
..4.|.....2.....3
..5.|.....6....10
..6.|....24....40....15
..7.|...120...196...105
..8.|...720..1148...700...105
..9.|..5040..7848..5068..1260
...
Fourth derivative of x^x:
x^(-x)*(d/dx)^4(x^x) = (1+log(x))^4 + C(4,2)/x^2*(1+log(x))^2*x - C(4,3)/x^3*(1+log(x)) + C(4,4)/x^4*(2*x + 3*x^2).
Example of recurrence relation for table entries:
T(7,2) = 4*T(6,2) + 6*T(5,1) = 4*40 + 6*6 = 196.
		

Crossrefs

Cf. A008296, A075856, A203852 (row sums).

Programs

  • Maple
    T[2,1]:= 1:
    for n from 3 to 15 do
      for k from 1 to floor(n/2) do
        T[n,k]:= (n-1-k)*`if`(k<= floor((n-1)/2),T[n-1,k],0) + `if`(k>=2 and k-1 <= floor((n-2)/2),(n-1)*T[n-2,k-1],0)
    od od:
    seq(seq(T[n,k],k=1..floor(n/2)),n=2..15); # Robert Israel, Jan 13 2016
  • Mathematica
    m = 14; F = Exp[t (x + (1-x) Log[1-x])];
    cc = CoefficientList[# + O[t]^m, t]& /@ CoefficientList[F + O[x]^m, x]* Range[0, m - 1]!;
    Rest /@ Drop[cc, 2] (* Jean-François Alcover, Jun 26 2019 *)
  • Sage
    # uses[bell_transform from A264428]
    # Computes the full triangle for n>=0 and 0<=k<=n.
    def A185164_row(n):
        g = lambda k: factorial(k-1) if k>0 else 0
        s = [g(k) for k in (0..n)]
        return bell_transform(n, s)
    [A185164_row(n) for n in (0..10)] # Peter Luschny, Jan 13 2016

Formula

Recurrence relation: T(n+1,k) = (n - k)*T(n,k) + n*T(n-1,k-1).
The diagonal entries D(n,k) := T(n+k,k) satisfy the recurrence D(n+1,k) = n*D(n,k) + (n + k)*D(n,k-1) so this table read by diagonals is A075856.
E.g.f.: F(x,t) = exp(t*(x + (1 - x)*log(1 - x))) = Sum_{n = 0..oo} R(n,t)*x^n/n! = 1 + t*x^2/2! + t*x^3/3! + (2*t + 3*t^2)*x^4/4! + .... The e.g.f. F(x,t) satisfies the partial differential equation (1 - x)*dF/dx + t*dF/dt = x*t*F.
This gives the recurrence relation for the row generating polynomials: R(n+1,x) = n*R(n,x) - x*d/dx(R(n,x)) + n*x*R(n-1,x) for n >= 1, with initial conditions R(0,x) = 1, R(1,x) = 0.
The e.g.f. for the triangle read by diagonals is given by the series reversion (with respect to x) (x - t*(x + (1 - x)*log(1 - x)))^(-1) = x + t*x^2/2! + (t + 3*t^2)x^3/3! + (2*t + 10*t^2 + 15*t^3)*x^4/4! + ....
Diagonal sums: Sum_{k = 1..n} T(n+k,k) = n^n , n >= 1.
Row sums A203852.
Also the Bell transform of the sequence g(k) = (k-1)! if k>0 else 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 13 2016

Extensions

More terms from Jean-François Alcover, Jun 26 2019

A211193 E.g.f.: exp((1+x)^(1+x)-1).

Original entry on oeis.org

1, 1, 3, 10, 45, 221, 1315, 8324, 60809, 464113, 3993811, 35342814, 349085869, 3486862653, 38870528411, 429139127416, 5345350992113, 63994963427393, 887692696733827, 11284513262684914, 175285847038616301, 2298693217837384957, 40805829165456572691
Offset: 0

Views

Author

Robert G. Wilson v, Feb 03 2013

Keywords

Comments

Note that for odd n >= 31, a(n) is negative! - Vaclav Kotesovec, Feb 13 2013
Conjecture: For n > 1, a(n) == 1 (mod n). - Mélika Tebni, Aug 22 2021

Crossrefs

Programs

  • Maple
    egf:= exp((1+x)^(1+x)-1);
    a:= n-> n!*coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 03 2013
    # second program: uses Lehmer-Comtet A008296.
    A211193:= n-> add(combinat[bell](k)*A008296(n, k), k=1..n): A211193(0):=1:
    seq(A211193(n), n=0..15); # Mélika Tebni, Aug 22 2021
  • Mathematica
    Range[0, 22]! CoefficientList[ Series[ Exp[(1 + x)^(1 + x)], {x, 0, 22}], x]/E
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp((1+x)^(1+x)-1))) \\ Joerg Arndt, Nov 30 2014

Formula

E.g.f.: exp((1+x)^(1+x)-1).
a(n) ~ (n-2)! if n is even and a(n) ~ -(n-2)! if n is odd. - Vaclav Kotesovec, Feb 13 2013
a(n) = Sum_{k=1..n} Bell(k)*A008296(n, k) for n >= 1. - Mélika Tebni, Aug 22 2021
Previous Showing 11-13 of 13 results.