cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A136389 Triangle read by rows of coefficients of Chebyshev-like polynomials P_{n,3}(x) with 0 omitted (exponents in increasing order).

Original entry on oeis.org

1, -3, 2, 3, -7, 4, -1, 9, -16, 8, -5, 25, -36, 16, 1, -19, 66, -80, 32, 7, -63, 168, -176, 64, -1, 33, -192, 416, -384, 128, -9, 129, -552, 1008, -832, 256, 1, -51, 450, -1520, 2400, -1792, 512, 11, -231, 1452, -4048, 5632, -3840, 1024, -1, 73, -912, 4424, -10496, 13056, -8192, 2048
Offset: 3

Views

Author

Milan Janjic, Mar 30 2008, revised Apr 05 2008

Keywords

Comments

If U_n(x), T_n(x) are Chebyshev's polynomials then U_n(x)=P_{n,0}(x), T_n(x)=P_{n,1}(x).
Let n>=3 and k be of the same parity. Consider a set X consisting of (n+k)/2-3 blocks of the size 2 and an additional block of the size 3, then (-1)^((n-k)/2)a(n,k) is the number of n-3-subsets of X intersecting each block of the size 2.

Examples

			Rows are (1),(-3,2),(3,-7,4),(-1,9,-16,8),(-5,25,-36,16),...
since P_{3,3}=x^3, P_{4,3}=-3x^2+2x^4, P_{5,3}=3x-7x^3+4x^5,...
		

Crossrefs

Programs

  • Maple
    if modp(n-k, 2)=0 then a[n, k]:=(-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-3, i)*binomial(n+k-3-2*i, n-3), i=0..(n+k)/2-3); end if;
  • Mathematica
    DeleteCases[#, 0] &@ Flatten@ Table[(-1)^((n - k)/2)*Sum[(-1)^i*Binomial[(n + k)/2 - 3, i] Binomial[n + k - 3 - 2 i, n - 3], {i, 0, (n + k)/2 - 3}], {n, 3, 14}, {k, 0 + Boole[OddQ@ n], n, 2}] (* Michael De Vlieger, Jul 05 2019 *)

Formula

If n>=3 and k are of the same parity then a(n,k)= (-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-3, i)*binomial(n+k-3-2*i, n-3), i=0..(n+k)/2-3) and a(n,k)=0 if n and k are of different parity.

A136390 Triangle read by rows of coefficients of Chebyshev-like polynomials P_{n,4}(x) with 0 omitted (exponents in increasing order).

Original entry on oeis.org

1, -4, 2, 6, -9, 4, -4, 16, -20, 8, 1, -14, 41, -44, 16, 6, -44, 102, -96, 32, -1, 26, -129, 248, -208, 64, -8, 96, -360, 592, -448, 128, 1, -42, 321, -968, 1392, -960, 256, 10, -180, 1002, -2528, 3232, -2048, 512, -1, 62, -681, 2972, -6448, 7424, -4352, 1024
Offset: 4

Views

Author

Milan Janjic, Mar 30 2008, revised Apr 05 2008

Keywords

Comments

If U_n(x), T_n(x) are Chebyshev's polynomials then U_n(x)=P_{n,0}(x), T_n(x)=P_{n,1}(x).
Let n>=4 and k be of the same parity. Consider a set X consisting of (n+k)/2-4 blocks of the size 2 and an additional block of the size 4, then (-1)^((n-k)/2)a(n,k) is the number of n-4-subsets of X intersecting each block of the size 2.

Examples

			Rows are (1),(-4,2),(6,-9,4),(-4,16,-20,8),... since P_{4,4}=x^4, P_{5,4}=-4x^3+2x^5, P_{6,4}=6x^2-9x^4+4x^6,...
		

Crossrefs

Programs

  • Maple
    if modp(n-k, 2)=0 then a[n, k]:=(-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-4, i)*binomial(n+k-4-2*i, n-4), i=0..(n+k)/2-4); end if;
  • Mathematica
    DeleteCases[#, 0] &@ Flatten@ Table[(-1)^((n - k)/2) * Sum[(-1)^i * Binomial[(n + k)/2 - 4, i] Binomial[n + k - 4 - 2 i, n - 4], {i, 0, (n + k)/2 - 4}], {n, 4, 14}, {k, 0 + Boole[OddQ@ n], n, 2}] (* Michael De Vlieger, Jul 05 2019 *)

Formula

If n>=4 and k are of the same parity then a(n,k)= (-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-4, i)*binomial(n+k-4-2*i, n-4), i=0..(n+k)/2-4) and a(n,k)=0 if n and k are of different parity.

A136397 Triangle read by rows of coefficients of Chebyshev-like polynomials P_{n,5}(x) with 0 omitted (exponents in increasing order).

Original entry on oeis.org

1, -5, 2, 10, -11, 4, -10, 25, -24, 8, 5, -30, 61, -52, 16, -1, 20, -85, 146, -112, 32, -7, 70, -231, 344, -240, 64, 1, -34, 225, -608, 800, -512, 128, 9, -138, 681, -1560, 1840, -1088, 256, -1, 52, -501, 1970, -3920, 4192, -2304, 512
Offset: 5

Views

Author

Milan Janjic, Mar 30 2008, revised Apr 05 2008

Keywords

Comments

If U_n(x), T_n(x) are Chebyshev's polynomials then U_n(x)=P_{n,0}(x), T_n(x)=P_{n,1}(x).
Let n>=5 and k be of the same parity. Consider a set X consisting of (n+k)/2-5 blocks of the size 2 and an additional block of the size 5, then (-1)^((n-k)/2)a(n,k) is the number of n-5-subsets of X intersecting each block of the size 2.

Examples

			Rows are (1),(-5,2),(10,-11,4),... since P_{5,5}=x^5, P_{6,5}=-5x^4+2x^6, P_{7,5}=10x^3-11x^5+4x^7,...
		

Crossrefs

Programs

  • Maple
    if modp(n-k, 2)=0 then a[n, k]:=(-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-5, i)*binomial(n+k-5-2*i, n-5), i=0..(n+k)/2-5); end if;
  • Mathematica
    DeleteCases[#, 0] &@ Flatten@ Table[(-1)^((n - k)/2) * Sum[(-1)^i * Binomial[(n + k)/2 - 5, i] Binomial[n + k - 5 - 2 i, n - 5], {i, 0, (n + k)/2 - 5}], {n, 5, 14}, {k, 0 + Boole[OddQ@ n], n, 2}] (* Michael De Vlieger, Jul 05 2019 *)

Formula

If n>=5 and k are of the same parity then a(n,k)= (-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-5, i)*binomial(n+k-5-2*i, n-5), i=0..(n+k)/2-5) and a(n,k)=0 if n and k are of different parity.

A136398 Triangle read by rows of coefficients of Chebyshev-like polynomials P_{n,6}(x) with 0 omitted (exponents in increasing order).

Original entry on oeis.org

1, -6, 2, 15, -13, 4, -20, 36, -28, 8, 15, -55, 85, -60, 16, -6, 50, -146, 198, -128, 32, 1, -27, 155, -377, 456, -272, 64, 8, -104, 456, -952, 1040, -576, 128, -1, 43, -363, 1289, -2360, 2352, -1216, 256, -10, 190, -1182, 3530, -5760, 5280, -2560, 512
Offset: 6

Views

Author

Milan Janjic, Mar 30 2008, revised Apr 05 2008

Keywords

Comments

If U_n(x), T_n(x) are Chebyshev's polynomials then U_n(x)=P_{n,0}(x), T_n(x)=P_{n,1}(x).
Let n>=6 and k be of the same parity. Consider a set X consisting of (n+k)/2-6 blocks of the size 2 and an additional block of the size 6, then (-1)^((n-k)/2)a(n,k) is the number of n-6-subsets of X intersecting each block of the size 2.

Examples

			Rows are (1),(-6,2),(15,-13,4),... since P_{6,6}=x^6, P_{7,6}=-6x^5+2x^7, P_{8,6}=15x^4-13x^6+4x^8,...
		

Crossrefs

Programs

  • Maple
    if modp(n-k, 2)=0 then a[n, k]:=(-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-6, i)*binomial(n+k-6-2*i, n-6), i=0..(n+k)/2-6); end if;
  • Mathematica
    DeleteCases[#, 0] &@ Flatten@ Table[(-1)^((n - k)/2) * Sum[(-1)^i * Binomial[(n + k)/2 - 6, i] Binomial[n + k - 6 - 2 i, n - 6], {i, 0, (n + k)/2 - 6}], {n, 6, 15}, {k, 0 + Boole[OddQ@ n], n, 2}] (* Michael De Vlieger, Jul 05 2019 *)

Formula

If n>=6 and k are of the same parity then a(n,k)= (-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-6, i)*binomial(n+k-6-2*i, n-6), i=0..(n+k)/2-6) and a(n,k)=0 if n and k are of different parity.

A373504 Triangular array: row n gives the coefficients T(n,k) of powers x^(2k) in the series expansion of ((b^n + b^(-n))/2)^2, where b = x + sqrt(x^2 + 1).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 9, 24, 16, 1, 16, 80, 128, 64, 1, 25, 200, 560, 640, 256, 1, 36, 420, 1792, 3456, 3072, 1024, 1, 49, 784, 4704, 13440, 19712, 14336, 4096, 1, 64, 1344, 10752, 42240, 90112, 106496, 65536, 16384, 1, 81, 2160, 22176, 114048, 329472, 559104, 552960, 294912, 65536
Offset: 0

Views

Author

Clark Kimberling, Aug 03 2024

Keywords

Comments

Related to Chebyshev polynomials of the first kind; see A123588.

Examples

			First 8 rows:
  1
  1    1
  1    4     4
  1    9    24     16
  1   16    80    128     64
  1   25   200    560    640    256
  1   36   420   1792   3456   3072   1024
  1   49   784   4704  13440  19612  14336  4096
The 4th polynomial is 1 + 9 x^2 + 24 x^4 + 16 x^6.
		

Crossrefs

Cf. A000012 (col 0), A000290 (col 1), A002415 ((1/4)*col(2)), A112742 (col 2), A000302 (T(n,n)), A123588, A008310.
Row sums give A055997(n+1).
Triangle without column 0 gives A334009.

Programs

  • Maple
    p:= proc(n) option remember; (b-> series(
          ((b^n+b^(-n))/2)^2, x, 2*n+1))(x+sqrt(x^2+1))
        end:
    T:= (n, k)-> coeff(p(n), x, 2*k):
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Aug 03 2024
  • Mathematica
    t[n_] := ((x + Sqrt[x^2 + 1])^n + (x + Sqrt[x^2 + 1])^(-n))/2
    u = Expand[Table[FullSimplify[Expand[t[n]]], {n, 0, 10}]^2]
    v = Column[CoefficientList[u, x^2]] (* array *)
    Flatten[v] (* sequence *)
    T[n_, k_] := If[k==0, 1, 4^(k - 1)*(2*Binomial[n + k, 2*k] - Binomial[n + k -1, 2*k -1])]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Aug 11 2024 *)

Formula

T(n, k) = if (k=0) then 1, otherwise 4^(k - 1)*(2*binomial(n + k, 2*k) - binomial(n + k - 1, 2*k - 1)). - Detlef Meya, Aug 11 2024
Previous Showing 21-25 of 25 results.