A157177
A new general triangle sequence based on the Eulerian form in three parts:m=1; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) + m*k*(n - k)*t0(n - 2 + 1, k - 1)].
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 82, 29, 1, 1, 61, 368, 368, 61, 1, 1, 125, 1399, 3010, 1399, 125, 1, 1, 253, 4863, 19243, 19243, 4863, 253, 1, 1, 509, 16048, 106099, 194846, 106099, 16048, 509, 1, 1, 1021, 51298, 532466, 1622734, 1622734, 532466, 51298
Offset: 0
{1},
{1, 1},
{1, 5, 1},
{1, 13, 13, 1},
{1, 29, 82, 29, 1},
{1, 61, 368, 368, 61, 1},
{1, 125, 1399, 3010, 1399, 125, 1},
{1, 253, 4863, 19243, 19243, 4863, 253, 1},
{1, 509, 16048, 106099, 194846, 106099, 16048, 509, 1},
{1, 1021, 51298, 532466, 1622734, 1622734, 532466, 51298, 1021, 1},
{1, 2045, 160669, 2510256, 11855730, 19628998, 11855730, 2510256, 160669, 2045, 1}
-
Clear[t, n, k, m];
t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1];
Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];
A157178
A new general triangle sequence based on the Eulerian form in three parts:m=2; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) + m*k*(n - k)*t0(n - 2 + 1, k - 1)].
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 21, 21, 1, 1, 46, 142, 46, 1, 1, 95, 644, 644, 95, 1, 1, 192, 2439, 5416, 2439, 192, 1, 1, 385, 8415, 34879, 34879, 8415, 385, 1, 1, 770, 27556, 192286, 358454, 192286, 27556, 770, 1, 1, 1539, 87486, 962090, 3001044, 3001044, 962090, 87486
Offset: 0
{1},
{1, 1},
{1, 8, 1},
{1, 21, 21, 1},
{1, 46, 142, 46, 1},
{1, 95, 644, 644, 95, 1},
{1, 192, 2439, 5416, 2439, 192, 1},
{1, 385, 8415, 34879, 34879, 8415, 385, 1},
{1, 770, 27556, 192286, 358454, 192286, 27556, 770, 1},
{1, 1539, 87486, 962090, 3001044, 3001044, 962090, 87486, 1539, 1},
{1, 3076, 272485, 4517480, 21945914, 36637288, 21945914, 4517480, 272485, 3076, 1}
-
Clear[t, n, k, m];
t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1];
Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];
A157179
A new general triangle sequence based on the Eulerian form in three parts ( subtraction):m=1; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) - m*k*(n - k)*t0(n - 2 + 1, k - 1)].
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 23, 50, 23, 1, 1, 53, 236, 236, 53, 1, 1, 115, 983, 1822, 983, 115, 1, 1, 241, 3723, 11995, 11995, 3723, 241, 1, 1, 495, 13168, 70369, 117534, 70369, 13168, 495, 1, 1, 1005, 44382, 377918, 997974, 997974, 377918, 44382, 1005, 1, 1
Offset: 0
{1},
{1, 1},
{1, 3, 1},
{1, 9, 9, 1},
{1, 23, 50, 23, 1},
{1, 53, 236, 236, 53, 1},
{1, 115, 983, 1822, 983, 115, 1},
{1, 241, 3723, 11995, 11995, 3723, 241, 1},
{1, 495, 13168, 70369, 117534, 70369, 13168, 495, 1},
{1, 1005, 44382, 377918, 997974, 997974, 377918, 44382, 1005, 1},
{1, 2027, 144605, 1896720, 7620498, 11819498, 7620498, 1896720, 144605, 2027, 1}
-
Clear[t, n, k, m];
t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1];
Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];
A157180
A new general triangle sequence based on the Eulerian form in three parts ( subtraction):m=2; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) - m*k*(n - k)*t0(n - 2 + 1, k - 1)].
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 34, 78, 34, 1, 1, 79, 380, 380, 79, 1, 1, 172, 1607, 3040, 1607, 172, 1, 1, 361, 6135, 20383, 20383, 6135, 361, 1, 1, 742, 21796, 120826, 203830, 120826, 21796, 742, 1, 1, 1507, 73654, 652994, 1751524, 1751524, 652994, 73654
Offset: 0
{1},
{1, 1},
{1, 4, 1},
{1, 13, 13, 1},
{1, 34, 78, 34, 1},
{1, 79, 380, 380, 79, 1},
{1, 172, 1607, 3040, 1607, 172, 1},
{1, 361, 6135, 20383, 20383, 6135, 361, 1},
{1, 742, 21796, 120826, 203830, 120826, 21796, 742, 1},
{1, 1507, 73654, 652994, 1751524, 1751524, 652994, 73654, 1507, 1},
{1, 3040, 240357, 3290408, 13475450, 21018288, 13475450, 3290408, 240357, 3040, 1}
-
Clear[t, n, k, m];
t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1];
Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];
A157181
A new general triangle sequence based on the Eulerian form in three parts ( subtraction):m=3; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) - m*k*(n - k)*t0(n - 2 + 1, k - 1)].
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 17, 17, 1, 1, 45, 106, 45, 1, 1, 105, 524, 524, 105, 1, 1, 229, 2231, 4258, 2231, 229, 1, 1, 481, 8547, 28771, 28771, 8547, 481, 1, 1, 989, 30424, 171283, 290126, 171283, 30424, 989, 1, 1, 2009, 102926, 928070, 2505074, 2505074, 928070
Offset: 0
{1},
{1, 1},
{1, 5, 1},
{1, 17, 17, 1},
{1, 45, 106, 45, 1},
{1, 105, 524, 524, 105, 1},
{1, 229, 2231, 4258, 2231, 229, 1},
{1, 481, 8547, 28771, 28771, 8547, 481, 1},
{1, 989, 30424, 171283, 290126, 171283, 30424, 989, 1},
{1, 2009, 102926, 928070, 2505074, 2505074, 928070, 102926, 2009, 1},
{1, 4053, 336109, 4684096, 19330402, 30217078, 19330402, 4684096, 336109, 4053, 1}
-
Clear[t, n, k, m];
t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1];
Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];
A177984
A symmetrical triangle of polynomial coefficients:p(x,n)=If[n == 0, 1, (1 - x)^(n + 1)*Sum[((2*k + 1)^n + (k + 1)^n + k^n)*x^k, {k, 0, Infinity}]/2].
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 14, 14, 1, 1, 44, 126, 44, 1, 1, 132, 887, 887, 132, 1, 1, 390, 5451, 12076, 5451, 390, 1, 1, 1150, 30984, 131665, 131665, 30984, 1150, 1, 1, 3400, 168076, 1252600, 2353126, 1252600, 168076, 3400, 1, 1, 10088, 885725, 10905407, 34828859
Offset: 0
{1},
{1, 1},
{1, 4, 1},
{1, 14, 14, 1},
{1, 44, 126, 44, 1},
{1, 132, 887, 887, 132, 1},
{1, 390, 5451, 12076, 5451, 390, 1},
{1, 1150, 30984, 131665, 131665, 30984, 1150, 1},
{1, 3400, 168076, 1252600, 2353126, 1252600, 168076, 3400, 1},
{1, 10088, 885725, 10905407, 34828859, 34828859, 10905407, 885725, 10088, 1},
{1, 30026, 4582497, 89401968, 454344414, 764856588, 454344414, 89401968, 4582497, 30026, 1}
-
p[x_, n_] = If[n == 0, 1, (1 - x)^(n + 1)*Sum[((2* k + 1)^n + (k + 1)^n + k^n)*x^k, {k, 0, Infinity}]/2];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
Comments