cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-54 of 54 results.

A192491 Molecular topological indices of the complete tripartite graphs K_{n,n,n}.

Original entry on oeis.org

24, 240, 864, 2112, 4200, 7344, 11760, 17664, 25272, 34800, 46464, 60480, 77064, 96432, 118800, 144384, 173400, 206064, 242592, 283200, 328104, 377520, 431664, 490752, 555000, 624624, 699840, 780864, 867912, 961200
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2011

Keywords

Crossrefs

Formula

a(n) = 12*n^2*(3*n-1).
a(n) = 24*A050509(n).
G.f.: 24*x*(2*x^2+6*x+1)/(x-1)^4. [Colin Barker, Nov 04 2012]
From Bruce J. Nicholson, Sep 18 2019: (Start)
a(n) = 24*n * A000326(n).
a(n) = 4*n^2 * A017233(n).
a(n) = 24*(n^3 + A000292(n-2) + A000330(n-2)).
a(n) = 24*(n^4 - (A008585(n) * A000330(n-1))).
a(n) = 6*A046092(n) + (A008594(n+1) * A140676(n-1)). (End)

A242570 a(n) = 252 * n.

Original entry on oeis.org

0, 252, 504, 756, 1008, 1260, 1512, 1764, 2016, 2268, 2520, 2772, 3024, 3276, 3528, 3780, 4032, 4284, 4536, 4788, 5040, 5292, 5544, 5796, 6048, 6300, 6552, 6804, 7056, 7308, 7560, 7812, 8064, 8316, 8568, 8820, 9072, 9324, 9576, 9828, 10080, 10332, 10584, 10836, 11088, 11340
Offset: 0

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

As lcm(1,2,3,...,9) = 2520, 10*a(n) + k is divisible by each k from 1 through 9.

Crossrefs

Programs

  • Mathematica
    252*Range[0, 49] (* Alonso del Arte, May 17 2014 *)
    LinearRecurrence[{2,-1},{0,252},50] (* Harvey P. Dale, Mar 25 2025 *)
  • PARI
    for(n=0,50,print(252*n))

Formula

From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 252*x/(x-1)^2.
E.g.f.: 252*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A044102(n) = 9*A135628(n) = 12*A008603(n) = 14*A008600(n) = 18*A008596(n) = 21*A008594(n) = 28*A008591(n) = 36*A008589(n) = 252*A001477(n). (End)

A285440 Consider the sums of the numbers < n that share the same greatest common divisor with n. Sequence lists numbers that have only one of those sums equal to n.

Original entry on oeis.org

3, 4, 8, 9, 15, 16, 20, 21, 27, 28, 32, 33, 39, 40, 44, 45, 51, 52, 56, 57, 63, 64, 68, 69, 75, 76, 80, 81, 87, 88, 92, 93, 99, 100, 104, 105, 111, 112, 116, 117, 123, 124, 128, 129, 135, 136, 140, 141, 147, 148, 152, 153, 159, 160, 164, 165, 171, 172, 176, 177
Offset: 1

Views

Author

Paolo P. Lava, Apr 19 2017

Keywords

Comments

Numbers with no sum equal to n are listed in A108118, with two sums equal to n are listed in A017593 and with three sums equal to n in A008594.
First difference has period 4: {1,4,1,6}.
Numbers that are congruent to {3, 4, 8, 9} mod 12. - Amiram Eldar, Dec 31 2021

Examples

			20 is in the sequence because:
gcd(k,20) = 1 for k = 1, 3, 7, 9, 11, 13, 17, 19: sum is 80.
gcd(k,20) = 2 for k = 2, 6, 14, 18: sum is 40.
gcd(k,20) = 4 for k = 4, 8, 12, 16: sum is 40.
gcd(k,20) = 5 for k = 5, 15: sum is 20.
gcd(k,20) = 10 for k = 10: sum is 10.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local a,k,n,t;
    for n from 1 to q do a:=array(1..n-1); for k from 1 to n-1 do a[k]:=0; od;
    for k from 1 to n-1 do a[gcd(n,k)]:=a[gcd(n,k)]+k; od; t:=0;
    for k from 1 to n-1 do if a[k]=n then t:=t+1; fi; od; if t=1 then print(n); fi;
    od; end: P(10^6);
  • Mathematica
    Flatten@ Position[#, k_ /; Length@ k == 1] &@ Table[Select[Transpose@ {Values@ #, Keys@ #} &@ Map[Total, PositionIndex@ Map[GCD @@ {n, #} &, Range[n - 1]]], First@ # == n &][[All, -1]], {n, 180}] (* Michael De Vlieger, Apr 28 2017, Version 10 *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {3, 4, 8, 9, 15}, 60] (* Amiram Eldar, Dec 31 2021 *)
  • PARI
    a(n) = n--; [3, 4, 8, 9][n%4+1] + 12*(n\4) \\ David A. Corneth, Apr 28 2017
    
  • PARI
    is(n) = {my(d=divisors(n), map=vector(d[#d-1]), v=vector(#d-1)); for(i=1,#d-1, map[d[i]]=i); for(i=1,n-1,v[map[gcd(i, n)]]+=i); sum(i=1,#v,v[i]==n)==1} \\ David A. Corneth, Apr 28 2017
    
  • PARI
    is(n) = vecsort(concat([3, 4, 8, 9], [n%12]), ,8)==[3, 4, 8, 9] \\ David A. Corneth, Apr 28 2017

Formula

From Chai Wah Wu, Nov 01 2018: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x*(3*x^4 + x^3 + 4*x^2 + x + 3)/(x^5 - x^4 - x + 1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (3-sqrt(3))*Pi/36. - Amiram Eldar, Dec 31 2021

A338259 Triangle read by rows: T(n,k) is the coefficient of (1+x)^k in the ZZ polynomial of the hexagonal graphene flake O(3,4,n).

Original entry on oeis.org

1, 12, 18, 41, 24, 120, 200, 120, 24, 11, 36, 306, 996, 1446, 984, 303, 42, 21, 48, 576, 2800, 6525, 7848, 4957, 1644, 274, 22, 11, 60, 930, 6020, 19365, 33600, 32487, 17694, 5336, 858, 71, 21, 72, 1368, 11064, 45435, 103200, 134806, 102912, 45567, 11358, 1510, 86, 1
Offset: 1

Views

Author

Henryk A. Witek, Oct 19 2020

Keywords

Comments

The maximum k for which T(n,k) is nonzero, denoted by Cl(n), is usually referred to as the Clar number of O(3,4,n); one has: Cl(1)=3, Cl(2)=6, Cl(3)=8, Cl(4)=10, Cl(5)=11, and Cl(n)=12 for n>5.
T(n,k) denotes the number of perfect matchings (i.e., Kekulé structures) with k proper sextets for the hexagonal graphene flake O(3,4,n).
ZZ polynomials of hexagonal graphene flakes O(3,4,n) can be computed using ZZDecomposer (see link below), a graphical program to compute ZZ polynomials of benzenoids, or using ZZCalculator (see link below).

Examples

			Triangle begins:
   k=0 k=1 k=2   k=3    k=4    k=5    k=6    k=7   k=8   k=9 k=10 k=11 k=12
n=1: 1 12   18     4
n=2: 1 24  120   200    120     24      1
n=3: 1 36  306   996   1446    984    303     42     2
n=4: 1 48  576  2800   6525   7848   4957   1644   274    22    1
n=5: 1 60  930  6020  19365  33600  32487  17694  5336   858   71   2
n=6: 1 72 1368 11064  45435 103200 134806 102912 45567 11358 1510  86  1
   ...
Row n=4 corresponds to the polynomial 1 + 48*(1+x) + 576*(1+x)^2 + 2800*(1+x)^3 + 6525*(1+x)^4 + 7848*(1+x)^5 + 4957*(1+x)^6 + 1644*(1+x)^7 + 274*(1+x)^8 + 22*(1+x)^9 + (1+x)^10.
		

Crossrefs

Column k=0 is A000012.
Column k=1 is A008594.
Row n=3 is identical to row n=4 of A338217 owing to symmetry of hexagonal graphene flakes.
Row sums give A107915.
Row sums give column k=0 of A338244.

Programs

  • Maple
    (n,k) -> binomial(n,k)*binomial(12,k)+18*binomial(n+1,k)*binomial(10,k-2)+84*binomial(n+2,k)*binomial(8,k-4)+126*binomial(n+3,k)*binomial(6,k-6)+57*binomial(n+4,k)*binomial(4,k-8)+4*binomial(n+5,k)*binomial(2,k-10) +add(4*binomial(n+1+h,k)*binomial(9,k-3)+24*binomial(n+2+h,k)*binomial(7,k-5)+36*binomial(n+3+h,k)*binomial(5,k-7)+14*binomial(n+4+h,k)*binomial(3,k-9),h = 0 .. 1) +add(add(binomial(2,s)*binomial(2,h)*binomial(n+2+s+h,k)*binomial(6-2*s,k-6-2*s),s = 0 .. 2),h = 0 .. 2)

Formula

T(n,k) = binomial(n,k)*binomial(12,k) + 18*binomial(n+1,k)*binomial(10,k-2) + 84*binomial(n+2,k)*binomial(8,k-4) + 126*binomial(n+3,k)*binomial(6,k-6) + 57*binomial(n+4,k)*binomial(4,k-8) + 4*binomial(n+5,k)*binomial(2,k-10) + Sum_{h=0..1} (4*binomial(n+1+h,k)*binomial(9,k-3) + 24*binomial(n+2+h,k)*binomial(7,k-5) + 36*binomial(n+3+h,k)*binomial(5,k-7) + 14*binomial(n+4+h,k)*binomial(3,k-9)) + Sum_{s=0..2} Sum_{h=0..2} binomial(2,s)*binomial(2,h)*binomial(n+2+s+h,k)*binomial(6-2*s,k-6-2*s) (conjectured, explicitly confirmed for n=1..1000).
Previous Showing 51-54 of 54 results.