A333940
Number of Lyndon factorizations of the k-th composition in standard order.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 5, 1, 2, 2, 4, 1, 4, 2, 7, 1, 2, 1, 4, 1, 2, 1, 7, 1, 2, 2, 4, 2, 5, 2, 7, 1, 2, 3, 9, 2, 5, 2, 12, 1, 2, 1, 4, 1, 2, 2, 7, 1, 2, 1, 4, 1, 2, 1, 11, 1, 2, 2, 4, 2, 5, 2, 7, 1, 4, 4, 11, 2, 5, 2, 12, 1, 2, 2, 4, 1, 7
Offset: 0
We have a(300) = 5, because the 300th composition (3,2,1,3) has the following Lyndon factorizations:
((3,2,1,3))
((1,3),(3,2))
((2),(3,1,3))
((3),(2,1,3))
((2),(3),(1,3))
Binary necklaces are counted by
A000031.
Necklace compositions are counted by
A008965.
Necklaces covering an initial interval are counted by
A019536.
Lyndon compositions are counted by
A059966.
Numbers whose reversed binary expansion is a necklace are
A328595.
Numbers whose prime signature is a necklace are
A329138.
Length of Lyndon factorization of binary expansion is
A211100.
Length of co-Lyndon factorization of binary expansion is
A329312.
Length of co-Lyndon factorization of reversed binary expansion is
A329326.
Length of Lyndon factorization of reversed binary expansion is
A329313.
All of the following pertain to compositions in standard order (
A066099):
- Rotational symmetries are counted by
A138904.
- Constant compositions are
A272919.
- Co-Lyndon compositions are
A326774.
- Aperiodic compositions are
A328594.
- Reversed co-necklaces are
A328595.
- Length of Lyndon factorization is
A329312.
- Length of co-Lyndon factorization is
A334029.
- Combinatory separations are
A334030.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
lynprod[]:={};lynprod[{},b_List]:=b;lynprod[a_List,{}]:=a;lynprod[a_List]:=a;
lynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{lynprod[{a},{x,b}],lynprod[{x,a},{b}]}]],{2,1},Prepend[lynprod[{a},{y,b}],x],{1,2},Prepend[lynprod[{x,a},{b}],y]];
lynprod[a_List,b_List,c__List]:=lynprod[a,lynprod[b,c]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
Table[Length[Select[dealings[stc[n]],lynprod@@#==stc[n]&]],{n,0,100}]
A351203
Number of integer partitions of n of whose permutations do not all have distinct runs.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 3, 6, 11, 16, 24, 36, 52, 73, 101, 135, 184, 244, 321, 418, 543, 694, 889, 1127, 1427, 1789, 2242, 2787, 3463, 4276, 5271, 6465, 7921, 9655, 11756, 14254, 17262, 20830, 25102, 30152, 36172, 43270, 51691, 61594, 73300, 87023, 103189, 122099, 144296, 170193, 200497
Offset: 0
The a(4) = 1 through a(9) = 16 partitions:
(211) (221) (411) (322) (332) (441)
(311) (2211) (331) (422) (522)
(21111) (511) (611) (711)
(3211) (3221) (3321)
(22111) (3311) (4221)
(31111) (4211) (4311)
(22211) (5211)
(32111) (22221)
(41111) (32211)
(221111) (33111)
(2111111) (42111)
(51111)
(222111)
(321111)
(2211111)
(3111111)
For example, the partition x = (2,1,1,1,1) has the permutation (1,1,2,1,1), with runs (1,1), (2), (1,1), which are not all distinct, so x is counted under a(6).
The version for run-lengths instead of runs is
A144300.
The version for normal multisets is
A283353.
The Heinz numbers of these partitions are
A351201.
The complement is counted by
A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A098859 counts partitions with distinct multiplicities, ordered
A242882.
A297770 counts distinct runs in binary expansion.
Counting words with all distinct runs:
-
A351202 = permutations of prime factors.
Cf.
A000041,
A035363,
A047993,
A116608,
A238130 or
A238279,
A325545,
A329746,
A350842,
A351003,
A351004,
A351291.
-
Table[Length[Select[IntegerPartitions[n],MemberQ[Permutations[#],_?(!UnsameQ@@Split[#]&)]&]],{n,0,15}]
-
from sympy.utilities.iterables import partitions
from itertools import permutations, groupby
from collections import Counter
def A351203(n):
c = 0
for s, p in partitions(n,size=True):
for q in permutations(Counter(p).elements(),s):
if max(Counter(tuple(g) for k, g in groupby(q)).values(),default=0) > 1:
c += 1
break
return c # Chai Wah Wu, Oct 16 2023
A318726
Number of integer compositions of n that have only one part or whose consecutive parts are indivisible and the last and first part are also indivisible.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 5, 3, 8, 13, 12, 23, 27, 56, 64, 100, 150, 216, 325, 459, 700, 1007, 1493, 2186, 3203, 4735, 6929, 10243, 14952, 22024, 32366, 47558, 69906, 102634, 150984, 221713, 325919, 478842, 703648, 1034104, 1519432, 2233062, 3281004, 4821791, 7085359
Offset: 1
The a(10) = 13 compositions:
(10)
(7,3) (3,7) (6,4) (4,6)
(5,3,2) (5,2,3) (3,5,2) (3,2,5) (2,5,3) (2,3,5)
(3,2,3,2) (2,3,2,3)
The a(11) = 12 compositions:
(11)
(9,2) (2,9) (8,3) (3,8) (7,4) (4,7) (6,5) (5,6)
(5,2,4) (4,5,2) (2,4,5)
-
Table[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,({_,x_,y_,_}/;Divisible[x,y])|({y_,_,x_}/;Divisible[x,y])]&]//Length,{n,20}]
-
b(n,k,pred)={my(M=matrix(n,n)); for(n=1, n, M[n,n]=pred(k,n); for(j=1, n-1, M[n,j]=sum(i=1, n-j, if(pred(i,j), M[n-j,i], 0)))); sum(i=1, n, if(pred(i,k), M[n,i], 0))}
a(n)={1 + sum(k=1, n-1, b(n-k, k, (i,j)->i%j<>0))} \\ Andrew Howroyd, Sep 08 2018
A318728
Number of cyclic compositions (necklaces of positive integers) summing to n that have only one part or whose adjacent parts (including the last with first) are coprime.
Original entry on oeis.org
1, 2, 3, 4, 6, 9, 13, 22, 34, 58, 95, 168, 280, 492, 853, 1508, 2648, 4715, 8350, 14924, 26643, 47794, 85779, 154475, 278323, 502716, 908913, 1646206, 2984547, 5418653, 9847190, 17916001, 32625618, 59470540, 108493150, 198094483, 361965239, 661891580, 1211162271
Offset: 1
The a(7) = 13 cyclic compositions with adjacent parts coprime:
7,
16, 25, 34,
115,
1114, 1213, 1132, 1123,
11113, 11212,
111112,
1111111.
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,neckQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]]&]],{n,20}]
-
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->gcd(i,j)==1))); vector(n, n, (n > 1) + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019
A318729
Number of cyclic compositions (necklaces of positive integers) summing to n that have only one part or whose consecutive parts (including the last with first) are indivisible.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 4, 6, 6, 8, 11, 19, 21, 30, 41, 59, 79, 112, 157, 219, 305, 430, 605, 860, 1210, 1727, 2424, 3463, 4905, 7001, 9954, 14211, 20271, 28980, 41392, 59254, 84800, 121540, 174163, 249932, 358578, 515091, 739933, 1063827, 1529767, 2201383
Offset: 1
The a(13) = 11 cyclic compositions with successive parts indivisible:
(13)
(2,11) (3,10) (4,9) (5,8) (6,7)
(2,4,7) (2,6,5) (2,8,3) (3,6,4)
(2,3,5,3)
Cf.
A000740,
A008965,
A059966,
A167606,
A285573,
A303362,
A304713,
A316476,
A318726,
A318727,
A318728,
A318730,
A328600.
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,neckQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]]&]],{n,20}]
-
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0))); vector(n, n, 1 + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019
A323870
Number of toroidal necklaces of size n whose entries cover an initial interval of positive integers.
Original entry on oeis.org
1, 4, 10, 61, 218, 3136, 13514, 272998, 2362439, 40899248, 295024106, 14045787790, 81055130522, 3040383719360, 61408850927732, 1661142088494553, 15337737297545402, 1128511554421317128, 9768588138876674858, 803306338873366385030, 15452347618762680757428
Offset: 1
The a(3) = 10 toroidal necklaces:
[1 2 3] [1 3 2] [1 2 2] [1 1 2] [1 1 1]
.
[1] [1] [1] [1] [1]
[2] [3] [2] [1] [1]
[3] [2] [2] [2] [1]
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
Table[Length[Select[nrmmats[n],neckmatQ]],{n,6}]
-
U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * k^(n*m/lcm(c, d))));
R(v)={sum(n=1, #v, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*v[k]))}
a(n)={if(n < 1, n==0, R(vector(n, k, sumdiv(n, d, U(d, n/d, k))) ))} \\ Andrew Howroyd, Aug 18 2019
A325546
Number of compositions of n with weakly increasing differences.
Original entry on oeis.org
1, 1, 2, 4, 7, 11, 19, 28, 41, 62, 87, 120, 170, 228, 303, 408, 534, 689, 899, 1145, 1449, 1842, 2306, 2863, 3571, 4398, 5386, 6610, 8039, 9716, 11775, 14157, 16938, 20293, 24166, 28643, 33995, 40134, 47199, 55540, 65088, 75994, 88776, 103328, 119886, 139126
Offset: 0
The a(1) = 1 through a(6) = 19 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(112) (41) (42)
(211) (113) (51)
(1111) (212) (114)
(311) (123)
(1112) (213)
(2111) (222)
(11111) (312)
(321)
(411)
(1113)
(2112)
(3111)
(11112)
(21111)
(111111)
Cf.
A000079,
A000740,
A007294,
A008965,
A070211 (concave-down compositions),
A173258,
A175342,
A240026,
A325360,
A325545,
A325547,
A325548,
A325552,
A325557.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Differences[#]&]],{n,0,15}]
-
\\ Row sums of R(n) give A007294 (=breakdown by width).
R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-w-1)\t + 1, v[i-w-(k-1)*t]))); Mat(L)}
seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M,n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j,w]))); x^i/(1 - x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 28 2019
A325680
Number of compositions of n such that every distinct circular subsequence has a different sum.
Original entry on oeis.org
1, 1, 2, 4, 5, 6, 8, 14, 16, 29, 24, 42, 46, 78, 66, 146, 133, 242, 208, 386, 352, 620, 494, 948, 842, 1447
Offset: 0
The a(1) = 1 through a(8) = 16 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(111) (31) (32) (33) (34) (35)
(1111) (41) (42) (43) (44)
(11111) (51) (52) (53)
(222) (61) (62)
(111111) (124) (71)
(142) (125)
(214) (152)
(241) (215)
(412) (251)
(421) (512)
(1111111) (521)
(2222)
(11111111)
-
subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Total/@subalt[#]&]],{n,0,15}]
A329324
Number of Lyndon compositions of n whose reverse is not a co-Lyndon composition.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 7, 16, 37, 76, 166, 328, 669, 1326, 2626, 5138, 10104, 19680, 38442, 74822, 145715, 283424, 551721, 1073224
Offset: 1
The a(6) = 1 through a(9) = 16 compositions:
(132) (142) (143) (153)
(1132) (152) (162)
(1142) (243)
(1232) (1143)
(1322) (1152)
(11132) (1242)
(11312) (1332)
(1422)
(11142)
(11232)
(11322)
(11412)
(12132)
(111132)
(111312)
(112212)
Lyndon and co-Lyndon compositions are counted by
A059966.
Numbers whose reversed binary expansion is Lyndon are
A328596.
Numbers whose binary expansion is co-Lyndon are
A275692.
Lyndon compositions that are not weakly increasing are
A329141.
Cf.
A000740,
A001037,
A008965,
A060223,
A102659,
A211100,
A329131,
A329312,
A329313,
A329318,
A329326.
-
lynQ[q_]:=Array[Union[{q,RotateRight[q,#1]}]=={q,RotateRight[q,#1]}&,Length[q]-1,1,And];
colynQ[q_]:=Array[Union[{RotateRight[q,#1],q}]=={RotateRight[q,#1],q}&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],lynQ[#]&&!colynQ[Reverse[#]]&]],{n,15}]
A333765
Number of co-Lyndon factorizations of the k-th composition in standard order.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 2, 4, 4, 7, 7, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 5, 2, 5, 2, 4, 4, 9, 4, 7, 7, 12, 11, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 4, 1
Offset: 0
The a(54) = 5, a(61) = 7, and a(237) = 9 factorizations:
((1,2,1,2)) ((1,1,1,2,1)) ((1,1,2,1,2,1))
((1),(2,1,2)) ((1),(1,1,2,1)) ((1),(1,2,1,2,1))
((1,2),(2,1)) ((1,1),(1,2,1)) ((1,1),(2,1,2,1))
((2),(1,2,1)) ((2,1),(1,1,1)) ((1,2,1),(1,2,1))
((1),(2),(2,1)) ((1),(1),(1,2,1)) ((2,1),(1,1,2,1))
((1),(1,1),(2,1)) ((1),(1),(2,1,2,1))
((1),(1),(1),(2,1)) ((1,1),(2,1),(2,1))
((1),(2,1),(1,2,1))
((1),(1),(2,1),(2,1))
Binary necklaces are counted by
A000031.
Necklace compositions are counted by
A008965.
Necklaces covering an initial interval are counted by
A019536.
Lyndon compositions are counted by
A059966.
Numbers whose reversed binary expansion is a necklace are
A328595.
Numbers whose prime signature is a necklace are
A329138.
Length of Lyndon factorization of binary expansion is
A211100.
Length of co-Lyndon factorization of binary expansion is
A329312.
Length of co-Lyndon factorization of reversed binary expansion is
A329326.
Length of Lyndon factorization of reversed binary expansion is
A329313.
All of the following pertain to compositions in standard order (
A066099):
- Rotational symmetries are counted by
A138904.
- Constant compositions are
A272919.
- Co-Lyndon compositions are
A326774.
- Aperiodic compositions are
A328594.
- Reversed co-necklaces are
A328595.
- Length of Lyndon factorization is
A329312.
- Length of co-Lyndon factorization is
A334029.
- Combinatory separations are
A334030.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
colynprod[]:={};colynprod[{},b_List]:=b;colynprod[a_List,{}]:=a;colynprod[a_List]:=a;
colynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{colynprod[{a},{x,b}],colynprod[{x,a},{b}]}]],{1,2},Prepend[colynprod[{a},{y,b}],x],{2,1},Prepend[colynprod[{x,a},{b}],y]];
colynprod[a_List,b_List,c__List]:=colynprod[a,colynprod[b,c]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
Table[Length[Select[dealings[stc[n]],colynprod@@#==stc[n]&]],{n,0,100}]
Comments