cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A335274 a(n) = 2*a(n-1) + a(n-3), where a(0) = 0, a(1) = 1, a(2) = 4.

Original entry on oeis.org

0, 1, 4, 8, 17, 38, 84, 185, 408, 900, 1985, 4378, 9656, 21297, 46972, 103600, 228497, 503966, 1111532, 2451561, 5407088, 11925708, 26302977, 58013042, 127951792, 282206561, 622426164, 1372804120, 3027814801, 6678055766, 14728915652, 32485646105, 71649347976
Offset: 0

Views

Author

Michael Tulskikh, May 30 2020

Keywords

Comments

a(n) is the number of ways to tile a 2 x n strip, with a bent tromino added to the top, with dominos and L-shaped trominos:
_
||
|||_
|||_||| . . .
|||_||| . . .

Examples

			a(2) = 4 as shown by these four tilings:
   _         _         _         _
  |X|_      | |_      |X|_      | |_
  |X|X|  ,  |_|X|  ,  |X|X|  ,  |_| |
  |_ _|     |X X|     | | |     |X|_|
  |_ _|     |_ _|     |_|_|     |X X|
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 0, 1}, {0, 1, 4}, 50] (* Paolo Xausa, Mar 20 2025 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x) / (1 - 2*x - x^3) + O(x^35))) \\ Colin Barker, Jun 04 2020

Formula

a(n) = 2*a(n-1) + a(n-3).
a(n) = 2*A008998(n-1) - A008998(n-4).
a(n) = A008998(n-1) + 2*A008998(n-2).
G.f.: x*(1 + 2*x) / (1 - 2*x - x^3). - Colin Barker, Jun 04 2020

A052599 Expansion of e.g.f.: 1/(1-2x-x^3).

Original entry on oeis.org

1, 2, 8, 54, 480, 5280, 69840, 1078560, 19031040, 377758080, 8331724800, 202138675200, 5349968870400, 153396430387200, 4736570917478400, 156702542540544000, 5529893367398400000, 207341583834857472000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Prod(Z,Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1-2x-x^3),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 10 2022 *)

Formula

E.g.f.: -1/(-1+2*x+x^3)
Recurrence: {a(0)=1, a(1)=2, a(2)=8, (-11*n-6-n^3-6*n^2)*a(n) +(-2*n-6)*a(n+2) +a(n+3)=0}
Sum(1/59*(16+12*_alpha^2+9*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+2*_Z+_Z^3))*n!
a(n) = n!*A008998(n). - R. J. Mathar, Nov 27 2011

Extensions

Definition clarified by Harvey P. Dale, Apr 10 2022

A052639 E.g.f. (1-2x)/(1-2x-x^3).

Original entry on oeis.org

1, 0, 0, 6, 48, 480, 6480, 100800, 1774080, 35199360, 776563200, 18840729600, 498640665600, 14297239756800, 441470866636800, 14605415016192000, 515412006100992000, 19325209343311872000, 767215648278503424000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Z,Z,Z,Sequence(Union(Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

E.g.f.: (-1+2*x)/(-1+2*x+x^3)
Recurrence: {a(1)=0, a(0)=1, a(2)=0, (-11*n-6-n^3-6*n^2)*a(n)+(-2*n-6)*a(n+2)+a(n+3)=0}
Sum(-1/59*(8+6*_alpha^2-25*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+2*_Z+_Z^3))*n!
a(n)= n!*A008998(n-3), n>2. - R. J. Mathar, Nov 27 2011

A100691 Number of self-avoiding paths with n steps on a triangular lattice in the strip Z x {0,1}.

Original entry on oeis.org

1, 4, 12, 30, 70, 158, 352, 780, 1724, 3806, 8398, 18526, 40864, 90132, 198796, 438462, 967062, 2132926, 4704320, 10375708, 22884348, 50473022, 111321758, 245527870, 541528768, 1194379300, 2634286476, 5810101726, 12814582758
Offset: 0

Views

Author

Emeric Deutsch, Dec 07 2004

Keywords

References

  • J. Labelle, Paths in the Cartesian, triangular and hexagonal lattices, Bulletin of the ICA, 17, 1996, 47-61.

Programs

  • Maple
    g:=series((1+z^2)*(1+z+z^2)/(1-z)/(1-2*z-z^3),z=0,35): 1,seq(coeff(g,z^n), n=1..34);

Formula

G.f.: (1+z^2)(1+z+z^2)/[(1-z)(1-2z-z^3)]= 1+2*(2+z^2)/((z-1)*(z^2+2*z-1)).
a(n) = 2*a(n-1) + a(n-3) + 6 for n >= 4.
a(n) = A008998(n+2) - A052980(n+1) - 3. - Ralf Stephan, May 15 2007
Conjecture: a(n) = A193641(n+2)-3, n>0 - R. J. Mathar, Jul 22 2022

A332491 a(n) = 2*a(n-1) + a(n-3), where a(0) = 3, a(1) = 1, a(2) = 2.

Original entry on oeis.org

3, 1, 2, 7, 15, 32, 71, 157, 346, 763, 1683, 3712, 8187, 18057, 39826, 87839, 193735, 427296, 942431, 2078597, 4584490, 10111411, 22301419, 49187328, 108486067, 239273553, 527734434, 1163954935, 2567183423, 5662101280, 12488157495, 27543498413
Offset: 0

Views

Author

Michael Tulskikh, Feb 13 2020

Keywords

Programs

  • Mathematica
    LinearRecurrence[{2,0,1},{3,1,2},40] (* Harvey P. Dale, Apr 20 2025 *)

Formula

a(n) = 2*a(n-1) + a(n-3).
a(n) = A052980(n) + 2*A008998(n-3).
a(n) = A008998(n-1) + 3*A008998(n-3).
G.f.: (5x-3)/(x^3+2*x-1).
Previous Showing 21-25 of 25 results.