A274703
Exponential generating function 1/M_{3}(z^3) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only.
Original entry on oeis.org
1, -4, 133, -15130, 4101799, -2177360656, 1999963458217, -2919514870785766, 6365117686550339275, -19765974970578036695068, 84220118333781814726917709, -477722110504065444764182065202, 3518554409906597166261453268226671, -32952557456293494405944914420304822440
Offset: 0
-
s := series(z/((exp(z)+2*exp(-z/2)*cos(z*3^(1/2)/2))/3),z,60):
seq((n*3+1)!*coeff(s,z,n*3+1), n=0..13);
-
c = CoefficientList[Series[1/MittagLefflerE[3,z^3],{z,0,15*3}],z];
Table[Factorial[3*n+1]*c[[3*n+1]], {n,0,13}]
A274704
Exponential generating function 1/M_{4}(z^4) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only.
Original entry on oeis.org
1, -5, 621, -437593, 1026405753, -6054175060941, 75477454065058725, -1766732850877953050849, 71248914440011028226682737, -4637564239713542128355021380117, 462852368857623061805761137170608989, -67965094887205237792816627191801312013545
Offset: 0
-
s := series(2*z/(cosh(z)+cos(z)),z,60):
seq((4*n+1)!*coeff(s,z,4*n+1),n=0..11);
-
c = CoefficientList[Series[1/MittagLefflerE[4, z^4], {z, 0, 15*4}], z];
Table[Factorial[4*n+1]*c[[4*n+1]], {n, 0, 12}]
A294314
Expansion of e.g.f. log(1 + x*sec(x))*exp(x).
Original entry on oeis.org
0, 1, 1, 5, 0, 64, -245, 2757, -23576, 272256, -3270977, 45055845, -671589952, 10984688636, -193875825117, 3688182769117, -75085512079184, 1630385857436224, -37596306847103457, 917765946045581357, -23641953753495247624, 640958728426947233468, -18242640219843554954221
Offset: 0
log(1 + x*sec(x))*exp(x) = x/1! + x^2/2! + 5*x^3/3! + 64*x^5/5! - 245*x^6/6! + ...
-
a:=series(log(1+x*sec(x))*exp(x),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
-
nmax = 22; CoefficientList[Series[Log[1 + x Sec[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
A295278
Expansion of e.g.f. log(1 + x*sech(x))*exp(x).
Original entry on oeis.org
0, 1, 1, -1, 0, 4, -5, 13, -392, 2112, 7663, -165067, 1011560, -2965756, -11164309, 630876517, -12760548400, 133046910432, -189966787521, -18567623055795, 392188656574896, -5061972266268844, 33655544331988203, 565132153437469165, -26647451471277927416
Offset: 0
log(1 + x*sech(x))*exp(x) = x/1! + x^2/2! - x^3/3! + 4*x^5/5! - 5*x^6/6! + ...
-
a:=series(log(1+x*sech(x))*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
-
nmax = 24; CoefficientList[Series[Log[1 + x Sech[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
A296741
Expansion of e.g.f. arcsin(x*sec(x)) (odd powers only).
Original entry on oeis.org
1, 4, 64, 2752, 237312, 34390016, 7512117248, 2302977392640, 942529341030400, 496287845973753856, 326775812392982937600, 263039306566659448242176, 254121613033387345942937600, 290175686081926976733941071872, 386599796043915196967089006968832
Offset: 0
arcsin(x*sec(x)) = x/1! + 4*x^3/3! + 64*x^5/5! + 2752*x^7/7! + 237312*x^9/9! + ...
Cf.
A001818,
A003700,
A009118,
A009119,
A009562,
A009563,
A009765,
A009843,
A102072,
A191003,
A296464,
A296466,
A296679,
A296680,
A296742,
A296743.
-
nmax = 15; Table[(CoefficientList[Series[ArcSin[x Sec[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
-
first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asin(x/cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017
A296742
Expansion of e.g.f. arcsinh(x*sec(x)) (odd powers only).
Original entry on oeis.org
1, 2, 4, -8, 2448, 130976, -2342848, -239130240, 99052990720, 8918588764672, -2795242017684480, -92786315822417920, 279479081010906828800, -57316070780459900928, -39411396653183724314673152, 5932051008707372732672475136, 10689040617354387626585873252352
Offset: 0
arcsinh(x*sec(x)) = x/1! + 2*x^3/3! + 4*x^5/5! - 8*x^7/7! + 2448*x^9/9! + ...
Cf.
A001818,
A003700,
A009118,
A009119,
A009562,
A009563,
A009765,
A009843,
A102072,
A191003,
A296464,
A296466,
A296679,
A296680,
A296741,
A296743.
-
nmax = 17; Table[(CoefficientList[Series[ArcSinh[x Sec[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
-
first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asinh(x/cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017
A296743
Expansion of e.g.f. arctanh(x*sec(x)) (odd powers only).
Original entry on oeis.org
1, 5, 109, 5977, 612729, 100954061, 24395453861, 8128143367905, 3571195811862385, 2000535014776893973, 1391684597704875555165, 1177047158822263838854889, 1189444022487013498606939625, 1415364934488337503351305867997, 1958850511524588636608881908473749
Offset: 0
arctanh(x*sec(x)) = x/1! + 5*x^3/3! + 109*x^5/5! + 5977*x^7/7! + 612729*x^9/9! + ...
Cf.
A003700,
A009118,
A009119,
A009562,
A009563,
A009765,
A009843,
A010050,
A102075,
A191003,
A296465,
A296467,
A296741,
A296742.
-
nmax = 15; Table[(CoefficientList[Series[ArcTanh[x Sec[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
-
first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(atanh(x/cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017
A009391
Expansion of log(1 + tanh(x))/cos(x).
Original entry on oeis.org
0, 1, -1, 3, -4, 25, -61, 427, -1184, 12465, -49201, 555731, -2361844, 35135945, -191422141, 2990414715, -17147588384, 329655706465, -2289437638081, 45692713833379, -329955144475204, 7777794952988025, -65643617893832221
Offset: 0
-
CoefficientList[Series[Log[1 + Tanh[x]]*Sec[x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 24 2015 *)
A193472
Numerator of ez(n-1)*n!/(4^n-2^n) where ez(n) is the n-th coefficient of sec(t)+tan(t) for n>0, a(0) = 1.
Original entry on oeis.org
1, 1, 1, 3, 1, 25, 1, 427, 1, 12465, 5, 555731, 691, 35135945, 7, 2990414715, 3617, 329655706465, 43867, 45692713833379, 174611, 1111113564712575, 854513, 1595024111042171723, 236364091, 387863354088927172625, 8553103, 110350957750914345093747, 23749461029
Offset: 0
-
gf := (f,n) -> coeff(series(f(x),x,n+1),x,n):
BG := n ->`if`(n=0,1,gf(sec+tan,n-1)*n!/(4^n-2^n)):
A193472 := n -> numer(BG(n)): seq(A193472(n),n=0..28);
-
ez[n_] := SeriesCoefficient[Sec[t] + Tan[t], {t, 0, n}];
a[0] = 1; a[n_] := Numerator[ez[n-1] n!/(4^n - 2^n)];
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 24 2019 *)
A193473
Denominator of ez(n-1)*n!/(4^n-2^n) where ez(n) is the n-th coefficient of sec(t)+tan(t) for n>0, a(0) = 1.
Original entry on oeis.org
1, 2, 6, 56, 30, 992, 42, 16256, 30, 261632, 66, 4192256, 2730, 67100672, 6, 1073709056, 510, 17179738112, 798, 274877382656, 330, 628292059136, 138, 70368735789056, 2730, 1125899873288192, 6, 18014398375264256, 870
Offset: 0
Peter Luschny, Aug 07 2011
-
gf := (f,n) -> coeff(series(f(x),x,n+1),x,n):
BG := n ->`if`(n=0,1,gf(sec+tan,n-1)*n!/(4^n-2^n)):
A193473 := n -> denom(BG(n)): seq(A193473(n),n=0..28);
-
ez[n_] := SeriesCoefficient[Sec[t] + Tan[t], {t, 0, n}];
a[0] = 1; a[n_] := Denominator[ez[n - 1] n!/(4^n - 2^n)];
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 26 2019 *)
Comments