cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A377799 Decimal expansion of the midradius of a truncated icosidodecahedron (great rhombicosidodecahedron) with unit edge length.

Original entry on oeis.org

3, 7, 6, 9, 3, 7, 7, 1, 2, 7, 9, 2, 1, 7, 1, 6, 6, 0, 2, 6, 7, 2, 2, 6, 4, 2, 0, 0, 6, 6, 1, 9, 4, 2, 4, 3, 5, 6, 3, 0, 0, 5, 1, 5, 7, 1, 9, 6, 1, 7, 2, 8, 3, 9, 2, 0, 1, 7, 9, 7, 6, 7, 9, 1, 4, 6, 1, 1, 5, 6, 3, 4, 7, 3, 8, 9, 4, 3, 6, 8, 5, 4, 8, 2, 7, 6, 4, 9, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Nov 08 2024

Keywords

Examples

			3.76937712792171660267226420066194243563005157196...
		

Crossrefs

Cf. A377796 (surface area), A377797 (volume), A377798 (circumradius).

Programs

  • Mathematica
    First[RealDigits[Sqrt[15/2 + Sqrt[45]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosidodecahedron", "Midradius"], 10, 100]]

Formula

Equals sqrt(15/2 + 3*sqrt(5)) = sqrt(15/2 + A010499) = sqrt(30 + A344171)/2.

A134976 Decimal expansion of (6 divided by golden ratio = 6/phi = 12/(1 + sqrt(5))).

Original entry on oeis.org

3, 7, 0, 8, 2, 0, 3, 9, 3, 2, 4, 9, 9, 3, 6, 9, 0, 8, 9, 2, 2, 7, 5, 2, 1, 0, 0, 6, 1, 9, 3, 8, 2, 8, 7, 0, 6, 3, 2, 1, 8, 5, 5, 0, 7, 8, 8, 3, 4, 5, 7, 7, 1, 7, 2, 8, 1, 2, 6, 9, 1, 7, 3, 6, 2, 3, 1, 5, 6, 2, 7, 7, 6, 9, 1, 3, 4, 1, 4, 6, 9, 8, 2, 4, 3, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Examples

			3.708203932499...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[6/GoldenRatio,10,120][[1]] (* Harvey P. Dale, Apr 29 2015 *)

Formula

Equals A010499 - 3. - R. J. Mathar, Apr 18 2008
From Amiram Eldar, Mar 18 2024: (Start)
Equals 2 * A134973.
Equals Product_{k>=0} (1 + 1/A192222(k)). (End)

Extensions

More terms from Harvey P. Dale, Apr 29 2015

A380981 Decimal expansion of the medium/short edge length ratio of a disdyakis triacontahedron.

Original entry on oeis.org

1, 5, 7, 0, 8, 2, 0, 3, 9, 3, 2, 4, 9, 9, 3, 6, 9, 0, 8, 9, 2, 2, 7, 5, 2, 1, 0, 0, 6, 1, 9, 3, 8, 2, 8, 7, 0, 6, 3, 2, 1, 8, 5, 5, 0, 7, 8, 8, 3, 4, 5, 7, 7, 1, 7, 2, 8, 1, 2, 6, 9, 1, 7, 3, 6, 2, 3, 1, 5, 6, 2, 7, 7, 6, 9, 1, 3, 4, 1, 4, 6, 9, 8, 2, 4, 3, 2, 4, 3, 2
Offset: 1

Views

Author

Paolo Xausa, Feb 10 2025

Keywords

Examples

			1.57082039324993690892275210061938287063218550788...
		

Crossrefs

Cf. A380982 (long/short edge length ratio).
Apart from leading digits the same as A176015, A134976 and A010499.

Programs

  • Mathematica
    First[RealDigits[3/10*(3 + Sqrt[5]), 10, 100]]

Formula

Equals (3/10)*(3 + sqrt(5)) = (3/10)*(3 + A002163).
Equals A176015 + 2/5.
Previous Showing 11-13 of 13 results.